Introduction to Game Theory and Applications

Stefano MORETTI and Fioravante PATRONE LAMSADE (CNRS), Paris Dauphine and DIPTEM, University of Genoa Paris, Telecom ParisTech, 2010

Gene expression and microarray

- Gene expression occurs when genetic information contained within DNA is *transcripted* into mRNA molecules and then *translated* into the proteins.
- Nowadays, microarray technology is available for taking "pictures" of gene expressions. Within a single experiment of this sophisticated technology, the level of expression of thousands of genes can be estimated in a sample of cells under a given condition.

From political and social science to genomics...

- Players are genes
- Who knows the **decision rule** in this context?
- IDEA: we can make a rule on microarray gene expression profiles.
- <u>Example</u>: we define a criterion to establish which genes have abnormal expressions on each array

Decision rule

A group of genes is *winning* on a single array if all genes that have abnormal expressions belong to that group

	array1
gene1	0
gene2	1
gene3	1

Both groups {gene2, gene3} and group {gene1, gene2, gene3} are winning.

•coalition {gene2, gene3} is winning two times out of three;

- •coalition {gene1, gene2} is winning one time out of three;
- •And so on for each coalition...

Example

	Array1	Array2	Array3
g ₁	0	1	0
g ₂	1	1	0
g ₃	1	0	1

The corresponding *microarray game* $<\{g_1, g_2, g_3\}, v> \text{ tale che}$ $v(\emptyset) = v(\{g_1\}) = v(\{g_2\}) = 0$ $v(\{g_1, g_3\}) = v(\{g1, g2\}) = v(\{g_3\}) = 1/3$ $v(\{g_2, g_3\}) = 2/3$ $v(\{g_1, g_2, g_3\}) = 1.$

Axioms for the Shapley value on microarray games

Property 1: Null Gene (NG)

A gene which does not contribute to change the worth of any coalition of genes, should receive zero power.

Prop.2:Equal Splitting (ES)

Each sample should receive the same level of reliability. So the power of a gene on two samples should be equal to the sum of the power on each sample divided by two.

Partnership of genes

A group of genes S such that does not exist a proper (\subset) subset of S which contributes in changing the worth of genes outside S.

Example

These two sets are partnerships of genes in the corresponding Microarray game

Property 3: Partnership Monotonicity (PM)

(N,v) a microarray game. If two partnerships of genes S and T, with $|T|\ge|S|$ are such that they are *-disjoint* (S \cap T=Ø), *-equivalent* (v(S)=v(T)) *-exhaustive* (v(S \cup T)=v(N)), then genes in the smaller *partnership* S must receive more relevance then genes in T.

Example

 $\psi_i \ge \psi_k$ For each $i \in \{1,2\}$ $k \in \{3,4,5\}$ Property 4: Partnership Rationality (PR) The total amount of power index received from players of a partnership S should not be smaller than v(S)

Property 5: Partnership Feasibility (PF)

The total amount of power index received from players of a partnership S should not be greater than v(N)

Theorem (Moretti, Patrone, BOnassi (2007)):

The Shapley value is the unique solution which satisfies NG, ES, PM, PR, PF on the class of microarray games.

Networks and biology

- Network based methods have been found useful in biology,
 - protein interaction networks
 - gene regulatory networks
 - gene co-expression networks
 - ▶...
- The structure of a newtork can formally be represented by a graph G = (V,E)
 - The vertex set contains the genes: V = {xgene, ygene, zgene,...}
 - > The edge set contains interactions.

A Array Data

Steps for constructing a co-expression network

- Microarray gene expression data A)
- Measure concordance of gene B) expression with a Pearson correlation
- C) The Pearson correlation matrix is either dichotomized to arrive at an adjacency matrix \rightarrow unweighted network

Or transformed continuously with the power adjacency function \rightarrow weighted network

Centrality tries to measure the 'importance' of a vertex

- **Degree centrality**: "How many nodes are connected to me?"
- Closeness centrality: "How close am I from all other nodes?"
- Betweenness centrality: "How important am I for shortest connections of any two other nodes?"

The maximal centrality is attained by the hub of a star, for all centrality measures.

(Shaw, 1954, and Nieminen, 1974) Degree centrality

How many nodes are connected me? (Beauchamp, 1965 and Sabidussi, 1966) Closeness centrality

How close am I from all other nodes?

 $b^{j} = \sum_{k \neq i, i \neq i, k \neq i} g^{j}_{ik} / g_{ik}$

it would seem foolish to discard the possibility of using a longer path, simply because a (slightly) shorter one exists.

Lethality and centrality

- Comprehensive efforts to determine the functional consequences of individual gene deletions in yeast (Giaever et al., Nature, 2002).
- Rank genes according to their <u>degree centrality</u> and correlate this with the phenotypic effect of their individual removal from the yeast genome and proteome.
 - the likelihood that removal of a protein will prove lethal correlates with centrality in protein networks (Jeong et al. *Nature* 2001, **411)**.
 - analysis of unweighted gene co-expression networks have revealed a relationship between centrality and essentiality across all genes (Provero [arXiv:cond-mat/0207345], 2002).
 - strong positive correlations between gene connectivity within the whole weighted network and gene lethality (Carlson, BMC Genomics, 2006.

Co-expression network games

- Use a co-expression network (N,E) as a communication network
- The set N of players is the set of genes studied
- Links in E are co-expression relations
- ≻What is an *a priori* game (N,v)?

Co-expression network games

- ➤ a finer resolution of gene interaction investigated in the model, which is based on pair-wise relationships of genes in the network.
- integration of a priori knowledge concerning the co-expression with key genes, which may be obtained by previous studies.

a priori game (N,v): the worth v(S) of a coalition of genes in S is the number of key genes associated only to genes in S

Communication network: a co-expression network from experimental data ({1,2,3},E)

A priori game

S	V	φ(v)
{1}	1	1.5
{2}	0	0
{3}	1	1.5
{1,2}	1	
{1,3}	3	
{2,3}	1	
{1,2,3}	3	- -

Graph-restricted game

S	w _E	φ(w _E
{1}	1	4/3
{2}	0	1/3
{3}	1	4/3
{1,2}	1	
{1,3}	2	
{2,3}	1	
{1,2,3}	3	ſ

