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A group of agents whose houses on the mountain 
are not yet connected to a water purifier;
For each agent it is sufficient, but not necessary, to 
be autonomously connected with the water purifier;
Agents can connect also via others;
To construct a pipe is costly.

Connection situations…



Why a TU-game?

Working together, players can realize 
extra savings or decrease costs, with 
respect to the situation where each player 
optimizes individually
The new problem is: how to divide the 
total cost? 



Problems on connection situations

fixed tree games, games defined on 
problems where previously built networks
must be maintained
minimum cost spanning tree (mcst) 
games, where an optimal connection 
network must still be constructed.



Minimum Cost Spanning Tree 
Situation

Consider a complete 
weighted graph
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– whose vertices represent agents
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– vertex 0 is the source
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– edges represent connections between 
agents or between an agent and the source
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– numbers close to edges are connection costs
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Minimum cost spanning tree (mcst) problem

Optimization problem:
How to connect each node to the source 0 
in such a way that the cost of construction 
of a spanning network (which connects 
every node directly or indirectly to the 
source 0) is minimum?



Example
N={1,2,3}
EN’={{1,0},{2,0},{2,1},{3,0},{3,1},{3,2}}
cost function shown on graphs
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Kruskal algorithm
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c(1)=24

c(3)=26

c(2)=24

c(1,3)=34

c(2,3)=44

c(1,2)=42

c(1,2,3)=52

Example: The cost game ({1,2,3},c) is defined on the 
following connection situation:
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Example: The cost game ({1,2,3},c) is defined on the 
following connection situation:

The game ({1,2,3}, c) is said mcst game (Bird (1976))

c(1)=24
c(2)=24

c(3)=26

c(1,3)=34

c(1,2)=42
c(2,3)=44

c(1,2,3)=52
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• The predecessor of 1 is 0: the Bird 
allocation gives to player 1 the cost of {0,1}. 

•The predecessor of 2 is 1: the Bird allocation 
gives to player 2 the cost of {1,2};

• The predecessor of 3 is 1: the Bird allocation 
gives to player 3 the cost of {1,3}.

w(Γ)=52
Bird allocation w.r.t. to Γ, (x1, x2, x3)=(24, 18 ,10) is in the 
core of ({1,2,3},c).

How to divide the total cost? (Bird 1976)



The Bird allocation w.r.t. this 
mcst is

(x1, x2, x3)=(18, 24 ,10)

The Bird allocation w.r.t .this 
mcst is

(x1, x2, x3)=(24, 18 ,10)
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Both allocations belong to the core of the mcst game (and 
also their convex combination).
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3
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(0,52,0)

(0,0,52)

(52,0,0)

x1+x2+x3=52

(x1,x2,x3)

(2,24,26)

(24,24,4)

(24,2,26)

I(N,c)



(18,24,10)(24,18,10)

(8,18,26)

Core(N,c)

(8,24,20)
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(24,24,4)

(2,24,26)(24,2,26)

I(N,c)
Bird 1 Bird 2



Bird allocation rule

It always provides an allocation 
(given a connection situation).
In general, not a unique allocation 
(each mcst determines a Bird 
allocation…).
Bird allocations are in the core of 
mcst games (extreme points)



What happens when the structure of the 
network changes?

Imagine to use a certain rule to allocate 
costs.

The cost of edges may increase: if the cost of an 
edge increases, nobody should be better off, 
according to such a rule (cost monotonicity);
One or more players may leave the connection 
situation: nobody of the remaining players should 
be better off (population monotonicity).



Cost monotonicity: Bird allocation behaviour
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Bird allocation: (4, 3 ,3) Bird allocation: (3, 5 ,3)

Bird rule does not satisfy cost monotonicity.



Population monotonicity: Bird allocation behaviour

Bird allocation: (5, 5 ,3) Bird allocation: (3, * ,6)
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Bird rule does not satisfy population monotonicity
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,0 (1,1,1)tbσ =

(0,0,0)

There are no 
edge costs to 
share.
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,1 1 1( ,1, )
2 2

tbσ =

10

(5,0,5)

1 and 3 share 
cost 10 
equally.

P-value: Feltkamp (1994), Branzei et al. (2004), Moretti (2008)
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tbσ =

(3,12,3)

18

2 is connected to 1 and 
3 who were already 
connected: 2 pays 2/3 
of 18 whereas the 
remaining is shared 
equally between 1 and 
3.
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Oops… there is 
a cycle: nobody 
want it.
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3 ,4 (0,0,0)tbσ =

24 (8,8,8)

Players are 
connected to 
0: share the 
total cost of 
the last edge 
(=24) equally



Algorithm to calculate the P-value

At any step of the Kruskal algorithm where a component is 
connected to some agents, charge the cost of that edge among 
these agents in the following way:

Proportionally to the cardinality_current_step-1 if  an agent is 
connected to a component which is connected to the source,
Otherwise, charge it proportionally to the difference: 
cardinality_previous_step-1 - cardinality_current_step-1

IDEA: charge the cost of an edge constructed during the Kruskal
algorithm only between agents involved, keeping into account the
cardinality of the connected components at that step and at the previous 
step of the algorithm



P-value
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Make the sum of all edge-by-edge allocations:

(0, 0, 0) +
(5, 0, 5) +
(3,12,3) +
(0, 0, 0) +
(8, 8, 8) =

P-value = (16,20,16)



P-value is a function defined on the set of all mcst situations 
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P-value belongs to the core of the corresponding mcst
game

P=(16, 20,16)



{1,2}
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{1,3}

{1,0} {2,0}

{2,3} {0,3}

{1,2} {1,3}

{2,0} {1,0}

{2,3} {0,3}

Kσ

Kσ’



Proposition 1. If 'w K Kσ σ∈ ∩  with 
'

, '
NEσ σ ∈Σ , then '( ) ( )P w P wσ σ= .  

Definition 3. The P-value is the map ': N NP →ℜW , defined by  

 ( ) ( )P w P w M wσ σ σ= =  

for each 'Nw∈W  and 
'NEσ ∈Σ  such that w Kσ∈ . 



P-value

Always provides a unique allocation 
(given a mcst situation).

It is in the core of the corresponding mcst
game.

Satisfies cost monotonicity.

Satisfies population monotonicity.



(18,24,10)(24,18,10)

(8,18,26)

Core(N,c)

(8,24,20)
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(24,24,4)

(2,24,26)(24,2,26)

I(N,c)
Bird 1 Bird 2

Valore P
(16,20,16)



1 2 3

10 15 20{1,2,3}

10 15 *{1,2}

10 * 25{1,3}

* 20 20{2,3}

10 * *{1}

* 20 *{2}

* * 30{3}

Population Monotonic Allocation Scheme (PMAS)
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aS,i≥ aT,i for all S,T∈2N and i∈N with i∈S⊆T



1 2 3

10 15 20{1,2,3}

10 15 *{1,2}

10 * 25{1,3}

* 20 20{2,3}

10 * *{1}

* 20 *{2}

* * 30{3}

Population Monotonic Allocation Scheme (PMAS)
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Exercise:

Consider the mcst situation depicted here. 
Determine:

• the corresponding mcst game;

• the core of the mcst game;

• the allocation given by the Bird rule;

• The P-value.
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,0 (1,1,1)tbσ =

(0,0,0)

There are no 
edge costs to 
share.
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(5,0,5)

1 and 3 share 
cost 10 
equally.

Proportional rule: (Feltkamp (1994))
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Players are 
connected to 
0 and pay the 
remaining 
obligations
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2 is connected to 1 and 3 
who were already 
connected: 2 pays 1/2 of 18 
whereas the remaining is 
shared equally between 1 
and 3.

(¼, ½, ¼)
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Oops… there is 
cycle: nobody 
want it.

(¼, ½, ¼)



The proportional rule is a Construct & Charge rule

Construct & Charge rules are based on the following 
general cost allocation protocol:
As soon as a link is constructed in the Kruskal
algorithm procedure: 

1) it must be totally charged among agents which are not 
yet connected with the source (connection property)

2) Only agents that are on some path containing the new 
edge may be charged (involvement property) 

when the construction of a mcst is completed, 
each agent has been charged for a total amount 
of fractions equal to 1 (total aggregation 
property).



Allocation provided by the 
proportional rule according to 
this ordering is(13.5, 13.5, 17)

Allocation provided by the 
proportional rule according to 
this ordering is (13.5, 17 ,13.5)
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Both allocations are in the core of the corresponding mcst game.
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Cost monotonicity: Proportional rule

Proportional rule: (14, 18 ,14) Proportional rule: (16, 16 ,20)

The Proportional rule is not cost monotonic.
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Axiomatic characterization (4 independent axioms)

Property 1. The solution F is efficient (EFF) if for each 'Nw∈W   

( ) ( ),i
i N

F w w
∈

= Γ∑  

where Γ is a minimum cost spanning network on N'.  

w(Γ)=52

( ) (16,20,16)tP w M wσ σ= =

Example:
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': N NF →ℜWA solution for mcst situations



Example:

Property 2. The solution F has the Equal Treatment (ET) property if for each 'Nw∈W
and for each i,j∈N with ( ) ( )i jC w C w=   

( ) ( ).i jF w F w=  
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P(w)=(2,2,6)t



Example:

Property 3. The solution F has the Upper Bounded Contribution (UBC) property if 
for each 'Nw∈W  and every (w,N')-component C≠{0}  

\{0}
\{0}

( ) min ({ ,0}).i i C
i C

F w w i
∈

∈

≤∑  
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P(w)=(0,4,6)t

Note that 1 is dummy
in the corresponding
mcst game



F(                            )

F(                           )

F(                          )

Property 4. The solution F has the Cone-wise Positive Linearity (CPL) property if for 
each 

'NEσ ∈Σ , for each pair of mcst situations ˆ,w w Kσ∈  and for each pair ˆ, 0α α ≥ , we 

have  

 ˆ ˆˆ ˆ( ) ( ) ( ).F w w F w F wα α α α+ = +  

 
Example:



It is possible to prove that the P-value satisfies the four 
properties EFF, ET, UBC and CPL. 

To prove the uniqueness consider a solution for mcst
situation F  which satisfies EFF, ET, UBC and CPL:

first look at the simple mcst situations (0-1 cost of 
edges): on such simple situation, EFF, ET and UBC imply 
F=P-value;

it is possible to decompose each mcst situation as a linear 
combination of simple mcst problems;

by CPL it follows that the F=P-value on each mcst
situation.

Theorem 1. The P-value is the unique solution which 
 satisfies the properties EFF, ET, UBC and CPL on 
 the class 'NW  of mcst situations. 



Phd Thesis, Tilburg Univeristy, The Netherlands:

http://arno.uvt.nl/show.cgi?fid=80868



Shapley value in practice
In practice, the main difficulty is the effort 
required for collecting the 2n data needed to have a 
TU-game on a set of n players.
It can happen that the data have a potentially 
simple structure, so that it is possible to treat (in 
applications) games with a huge number of 
players. 
in such cases one can exploit the specific structure
of the data to get a much more manageable 
formula of the Shapley value



Airport games (Littlechild and Thompson
(1977), and Littlechild and Owen (1973))

The issue is: how to divide the costs due to the 
landing strip of an airport among the planes that 
use it? 
One idea has to do with the identification of the 
players that will give rise to a cooperative (cost) 
TU-game 
a reasonable modeling approach brings to the idea 
that the players are the landings that occur during 
the lifetime of the landing strip (or during one 
year...).



Define the characteristic function
Since not all players will need a landing strip of 
the same length, one can reasonably assume that 
the cost associated with a landing strip long 
enough to accommodate all of the landings in S 
can be imputed to S.
Formally, we partition the set of all landings, N, 
into groups of landings that require a strip of the 
same length: N1,N2, . . . , Nk , ordered in an 
increasing way w.r.t. costs. 
For each group Ni, let Ci be its cost. So 

c(S) = max{Ct : S ∩ Nt ≠∅}.



How to share airport costs
Assume there is no worry about the intensity of use 
of the various components by the players 
(landings),
a sensible accounting principle suggests to divide 
the cost due to an element evenly among those who 
use it.
In such a way, it is easy to get a sensible cost 
allocation, for whose straightforward computation 
we need very few data:

the cardinality of each of the homogeneous groups Ni ,
C1, C2, …, Ck the costs induced by each of the groups.



The resulting allocation, for a player m belonging 
to Ni, is given by the formula.

an accounting principle, without making any 
explicit reference to the (cost) game 
this approach provides exactly the Shapley value 
for the given game
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Railway network

A slight generalization of this line of thought has 
been provided by Fragnelli et al. (1999) (see also 
González and Herrero (2004)). 
The issue was, again, a fair imputation of the costs 
arising from the use of an infrastructure (the 
railway network, in this case) among its users.
Here, again, one faces a problem whose modeling 
leads “naturally” to a game with a lot of players, 
that in this case are trains running on the 
infrastructure during, e.g., one year.



Many cost elements (1)

m different services (or cost elements) E1, E2,..., Em
(roads, electrical lines, terminals... Try to imagine 
also internet services...)
Every player may use one or more services: P1, 
P2,..., Pm cost of the services and Si the set of 
players using Ei.
Consider the game (N,c) where the cost of a non-
empty coalition S∈2N is the sum of the costs of 
services used by at least one player:
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Many cost elements (2)

Classical examples are application for the 
computation of service tariffs: telephone, building, 
waste or water treatment, etc.
Game (N,c) can be seen as a sum of m simple cost 
games c1+c2+ ...+cm where ck is such that:

⎩
⎨
⎧ ∅≠∩

=
otherwise 0
 if 

)( kkk SSP
Sc
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Many cost elements (3)

Consequently, by the additivity of the Shapley 
value

since ck are concave games, their sum is a concave 
game: the Shapley value φ(c) is in the core of 
game (N,c) (and also pmas extendable)
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Tariffs in practice
The use of an allocation method, like the Shapley value, 
among different municipalities (for example) can provide 
difficulties when the citizens are called to pay for the 
services provided. 
It is quite possible that the allocation of costs among 
municipalities brings to differences in the tariffs for the final 
users that may be difficult to justify (at least, from the point
of view of gathering enough political consensus at the local 
elections).
This tension is clearly visible from the interesting 
interviews of the local decision makers that are mentioned 
in Loehman et al. (1979).



Water related issues

The modeling tool of TU-games has been often 
applied to the context of issues related with water: 
allocation of water, allocation of costs related with 
various kinds of projects (water reservoirs, 
irrigation systems, wastewater treatments and 
reuse, etc.).
One of the most relevant contributions, from this 
point of view, can be traced back to the work of 
Loehman and Whinston (1976) and related papers 
(e.g., Loehman et al. 1979).



Against symmetry in applications

They take into account the fact that, for some structural 
reason, it is not plausible that all coalitions could be 
potentially considered. For example, to build a piping 
system

it is quite possible that coalitions like {1, 4} or {2, 4} will 
not form, possibly due to high costs due to the distance from 
a “source” located close to 1 and 2, while the presence of 
player 3 could allow some savings for coalitions like 
{1, 3, 4} and {2, 3, 4}.

1 2 3 4



Generalized Shapley value
taking into account how these asymmetries influence 
the coalition building process.
some of the permutations should not be taken into 
account, since in the process they would require to 
build up an “impossible” coalition. 
if we assume that coalitions {1, 4} and {2, 4} cannot 
form, then one should delete the permutations that 
involve in the process,



Players heterogeneity (1)
Sometimes we need to mix players that are 
significantly different (e.g., towns and “big” farms).
This heterogeneity of the players makes the use of 
the symmetry axiom questionable. 
One reason for asymmetry could be, for example, a 
different exposure to risk between “players” of 
different kinds.



Players heterogeneity (2)
Example: a much higher exposure to risk of farmers, 
compared with a town, concerning the profits (or 
savings) obtainable from the facility for the 
treatment of wastewater. 
An answer to this issue could be to use a more 
sophisticated model than a classical TU-game, like a 
stochastic TU-game (Suijs and Borm 1999)
the extension of a solution for TU-games to this 
richer model is not obvious or unique; 
Timmer et al. (2004): three different definitions of 
Shapley value applied to stochastic TU-game.


