Introduction to Game Theory and Applications

Stefano MORETTI and Fioravante PATRONE LAMSADE (CNRS), Paris Dauphine and DIPTEM, University of Genoa Paris, Telecom ParisTech, 2010

How to share v(N)...

- The Core of a game can be used to exclude those allocations which are *not stable*.
- But the core of a game can be a bit "extreme" (see for instance the glove game)
- Sometimes the core is *empty* (see for example the game with pirates)
- > And if it is not empty, there can be many allocations in the core (*which is the best*?)

An axiomatic approach (Shapley (1953)

- Similar to the approach of Nash in bargaining: which properties an allocation method should satisfy in order to divide v(N) in a reasonable way?
- Given a subset C of G^N (class of all TU-games with N as the set of players) a *(point map) solution* on C is a map $\Phi: C \rightarrow IR^N$.
- For a solution Φ we shall be interested in various properties...

Symmetry

PROPERTY 1(SYM) For all games $v \in G^N$, If $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \in 2^N$ s.t. $i, j \in N \setminus S$,

then $\Phi_i(v) = \Phi_j(v)$.

EXAMPLE

Consider a TU-game ($\{1,2,3\},v$) s.t. v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20.

Players 2 and 3 are symmetric. In fact:

 $v(\emptyset \cup \{2\}) = v(\emptyset \cup \{3\}) = 0$ and $v(\{1\} \cup \{2\}) = v(\{1\} \cup \{3\}) = 4$

If Φ satisfies SYM, then $\Phi_2(v) = \Phi_3(v)$

Efficiency

<u>**PROPERTY 2** (EFF)</u> For all games $v \in \mathbf{G}^N$,

 $\sum_{i \in N} \Phi_i(v) = v(N)$, i.e., $\Phi(v)$ is a *pre-imputation*.

Null Player Property

<u>**DEF.</u>** Given a game $v \in \mathbf{G}^N$, a player $i \in N$ s.t.</u>

 $v(S \cup i) = v(S)$ for all $S \in 2^N$ will be said to be a null player.

PROPERTY 3 (NPP) For all games $v \in \mathbf{G}^N$, $\Phi_i(v) = 0$ if i is a null player.

EXAMPLE Consider a TU-game ($\{1,2,3\},v$) such that v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2, 3) = 6. Player 1 is a null player. Then $\Phi_1(v) = 0$ **EXAMPLE** Consider a TU-game ({1,2,3},v) such that v(1) = 0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3)= 6, v(1, 2, 3) = 6. On this particular example, if Φ satisfies NPP, SYM and EFF we have that $\Phi_1(v) = 0$ by NPP $\Phi_2(v) = \Phi_3(v)$ by SYM $\Phi_1(v) + \Phi_2(v) + \Phi_3(v) = 6$ by EFF So $\Phi = (0,3,3)$ But our goal is to characterize Φ on \mathbf{G}^{N} .

One more property is needed.

Additivity

<u>**PROPERTY 2** (ADD)</u> Given $v, w \in \mathbf{G}^N$,

 $\Phi(v) + \Phi(w) = \Phi(v + w).$

.**EXAMPLE** Consider two TU-games v and w on N= $\{1,2,3\}$ w(1) = 1v+w(1) = 4v(1) = 3 Φ w(2) = 0v+w(2) = 4v(2) = 4w(3) = 1v+w(3) = 2v(3) = 1v+w(1, 2) = 10w(1, 2) = 2v(1, 2) = 8v+w(1, 3) = 6w(1, 3) = 2v(1, 3) = 4v+w(2, 3) = 9w(2, 3) = 3v(2, 3) = 6w(1, 2, 3) = 4v+w(1, 2, 3) = 14v(1, 2, 3) = 10

Theorem 1 (Shapley 1953)

There is a unique point map solution *φ* defined on **G**^N that satisfies EFF, SYM, NPP, ADD. Moreover, for any i∈ N we have that

$$\phi_i(v) = \frac{1}{n!} \sum_{\sigma \in \Pi} m_i^{\sigma}(v)$$

Here Π is the set of all permutations $\sigma: N \to N$ of N, while $m^{\sigma}_{i}(v)$ is the marginal contribution of player i according to the permutation σ , which is defined as:

v({ $\sigma(1), \sigma(2), \ldots, \sigma(j)$ })-v({ $\sigma(1), \sigma(2), \ldots, \sigma(j-1)$ }), where j is the unique element of N s.t. i = $\sigma(j)$. **Probabilistic interpretation:** (the "room parable")

> Players gather one by one in a room to create the "grand coalition", and each one who enters gets his marginal contribution.

>Assuming that all the different orders in which they enter are equiprobable,

the Shapley value gives to each player her/his expected payoff.

Example (N,v) such that N= $\{1,2,3\},$ v(1)=v(3)=0, v(2)=3, v(1,2)=3, v(1,2)=3, v(1,3)=1, v(2,3)=4, v(1,2,3)=5.

Permutation	1	2	3
1,2,3	0	3	2
1,3,2	0	4	1
2,1,3	0	3	2
2,3,1	1	3	1
3,2,1	1	4	0
3,1,2	1	4	0
Sum	3	21	6
φ(v)	3/6	21/6	6/6

Exercise

Calculate the Shapley value of the TU-game (N,v) such that $N = \{1, 2, 3\},\$ v(1) = 3v(2) = 4v(3) = 1v(1, 2) = 8v(1, 3) = 4v(2, 3) = 6v(1, 2, 3) = 10

Permutation	1	2	3
1,2,3			
1,3,2			
2,1,3			
2,3,1			
3,2,1			
3,1,2			
Sum			
φ(v)			

Example

(Glove game with L= $\{1,2\}$, R= $\{3\}$) v(1,3)=v(2,3)=v(1,2,3)=1, v(S)=0 otherwise

C(v) (0,0,1) (1/6,1/6,2/3)

(1/6,1/6,2	(3)	(V)
(1.0.0)	l(v)	
(1,0,0)		(0,1,0)

Permutation	1	2	3
1,2,3	0	0	1
1,3,2	0	0	1
2,1,3	0	0	1
2,3,1	0	0	1
3,2,1	0	1	0
3,1,2	1	0	0
Sum	1	1	4
φ(v)	1/6	1/6	4/6

Unanimity games (1)

► <u>**DEF</u>** Let $T \in 2^N \setminus \{\emptyset\}$. The *unanimity game* on T is defined as the TU-game (N,u_T) such that</u>

 $u_{T}(S) = \begin{cases} 1 \text{ if } T \subseteq S \\ 0 \text{ otherwise} \end{cases}$

- Note that the class G^N of all n-person TU-games is a vector space (obvious what we mean for v+w and αv for v, w \in G^N and $\alpha \in IR$).
- ➤ the dimension of the vector space G^N is 2ⁿ-1, where n=|N|.
- > {u_T|T∈2^N\{Ø}} is an interesting basis for the vector space **G**^N.

Unanimity games (2)

- Every coalitional game (N, v) can be written as a linear combination of unanimity games in a unique way, i.e., $v = \sum_{S \in 2^N} \lambda_S(v) u_S$.
- ➤ The coefficients $\lambda_{S}(v)$, for each $S \in 2^{N}$, are called unanimity coefficients of the game (N, v) and are given by the formula: $\lambda_{S}(v) = \sum_{T \in 2^{S}} (-1)^{s-t} v(T)$.

.EXAMPLE Unanimity coefficients of ({1,2,3},v)			
v(1) = 3	$\lambda_1(v) = 3$	$\lambda_{S}(v) = \sum_{T \in 2}^{S} (-1)^{s-t} v(T)$	
v(2) =4	$\lambda_2(v) = 4$		
v(3) = 1	$\lambda_3(v) = 1$		
v(1, 2) =8	$\lambda_{\{1,2\}}(v) = -3-4$	4+8=1	
v(1, 3) = 4	$\lambda_{\{1,3\}}(v) = -3-$	-1+4=0	
v(2, 3) = 6	$\lambda_{\{2,3\}}(v) = -4-$	-1+6=1	
v(1, 2, 3) = 10	$\lambda_{\{1,2,3\}}(v) = -2$	3-4-1+8+4+6-10=0	

 $v=3u_{\{1\}}(v)+4u_{\{2\}}(v)+u_{\{3\}}(v)+u_{\{1,2\}}(v)+u_{\{2,3\}}(v)$

Sketch of the Proof of Theorem1

- Shapley value satisfies EFF, SYM, NPP, ADD ("easy" to prove).
- → Properties EFF, SYM, NPP determine ϕ on the class of all games αv, with v a unanimity game and $\alpha \in IR$.
 - ≻Let $S \in 2^N$. The Shapley value of the unanimity game (N,u_s) is given by

$$\phi_{i}(\alpha u_{S}) = \begin{cases} \alpha/|S| & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

Since the class of unanimity games is a basis for the vector space, ADD allows to extend ϕ in a unique way to \mathbf{G}^{N} .

An alternative formulation

- Let $m^{\sigma'}(v)=v(\{\sigma'(1),\sigma'(2),\ldots,\sigma'(j)\})-v(\{\sigma'(1),\sigma'(2),\ldots,\sigma'(j-1)\}),$ where j is the unique element of N s.t. $i = \sigma'(j).$
- $\succ \text{Let } S = \{\sigma'(1), \sigma'(2), \ldots, \sigma'(j)\}.$
- ▶ Q: How many other orderings $\sigma \in \Pi$ do we have in which {σ(1), σ(2), ..., σ(j)}=S and i = σ(j)?
- > A: they are precisely (|S|-1)!×(|N|-|S|)!
- Where (|S|-1)! Is the number of orderings of S\{i} and (|N|-|S|)! Is the number of orderings of N\S
- We can rewrite the formula of the Shapley value as the following:

$$\phi_i(v) = \sum_{S \in 2^N : i \in S} \frac{(s-1)!(n-s)!}{n!} (v(S) - v(S \setminus \{i\}))$$

Alternative properties

▶ **PROPERTY 5** (Anonymity, ANON) Let $(N, v) \in \mathbf{G}^N$, $\sigma: N \to N$ be a permutation. Then, $\Phi_{\sigma(i)}(\sigma v) = \Phi_i(v)$ for all $i \in N$.

≻ Here σv is the game defined by: $\sigma v(S) = v(\sigma(S))$, for all $S \in 2^N$.

Interpretation: The meaning of ANON is that whatever a player gets via Φ should depend only on the *structure* of the game v, not on his "name", i.e., the way in which he is labelled.

- ► <u>DEF</u> (Dummy Player) Given a game (N, v), a player i∈ N s.t. $v(S \cup \{i\}) = v(S) + v(i)$ for all S∈ 2^N will be said to be a dummy player.
- **PROPERTY 6** (Dummy Player Property, DPP) Let $v \in \mathbf{G}^N$. If $i \in N$ is a dummy player, then $\Phi_i(v) = v(i)$.
- **NB**: often NPP and SYM are replaced by DPP and ANON, respectively.

Characterization on a subclass

- Shapley and Shubik (1954) proposed to use the Shapley value as a power index,
- ➤ ADD property does not impose any restriction on a solution map defined on the class of simple games S^N , which is the class of games such that $v(S) \in \{0,1\}$ (often is added the requirement that v(N) = 1).
- Therefore, the classical conditions are not enough to characterize the Shapley–Shubik value on S^N.
- ➤ We need a condition that resembles ADD and can substitute it to get a characterization of the Shapley–Shubik (Dubey (1975)) index on S^N:

PROPERTY 7 (Transfer, TRNSF) For any $v, w \in S(N)$, it holds:

 $\Phi(\mathbf{v} \lor \mathbf{w}) + \Phi(\mathbf{v} \land \mathbf{w}) = \Phi(\mathbf{v}) + \Phi(\mathbf{w}).$

Here $v \lor w$ is defined as $(v \lor w)(S) = (v(S) \lor w(S)) = \max\{v(S), w(S)\},\$ and $v \land w$ is defined as $(v \land w)(S) = (v(S) \land w(S)) = \min\{v(S), w(S)\},\$

.<u>EXAMPLE</u> Two TU-games v and w on N={1,2,3}

Reformulations

- Other axiomatic approaches have been provided for the Shapley value, of which we shall briefly describe those by Young and by Hart and Mas-Colell.
- **PROPERTY 8** (Marginalism, MARG) A map Ψ : $\mathbf{G}^{N} \rightarrow IR^{N}$ satisfies MARG if, given $v, w \in G^{N}$, for any player $i \in N$ s.t. $v(S \cup \{i\}) - v(S) = w(S \cup \{i\}) - w(S)$ for each $S \in 2^{N}$, the following is true:

$$\Psi_{i}(v) = \Psi_{i}(w).$$

Theorem 2 (Young 1988) There is a unique map Ψ defined on G(N) that satisfies EFF, SYM, and MARG. Such a Ψ coincides with the Shapley value.

.<u>EXAMPLE</u> Two TU-games v and w on N={1,2,3}

$$v(1) = 3$$
 $w(1) = 2$ $v(2) = 4$ $w(2) = 3$ $v(3) = 1$ $w(3) = 1$ $v(1, 2) = 8$ $w(1, 2) = 2$ $v(1, 3) = 4$ $w(1, 3) = 3$ $v(2, 3) = 6$ $w(2, 3) = 5$ $v(1, 2, 3) = 10$ $w(1, 2, 3) = 4$

 $w(\emptyset \cup \{3\}) - w(\emptyset) = v(\emptyset \cup \{3\}) - v(\emptyset) = 1$ $w(\{1\} \cup \{3\}) - w(\{1\}) = v(\{1\} \cup \{3\}) - v(\{1\}) = 1$ $w(\{2\} \cup \{3\}) - w(\emptyset) = v(\{2\} \cup \{3\}) - v(\emptyset) = 1$

$$w(\{1,2\}\cup\{3\})-w(\{1,2\})=v(\{1,2\}\cup\{3\})-v(\{1,2\}=1)$$

$$\Psi_3(\mathsf{v})=\Psi_3(\mathsf{w}).$$

Potential

- A quite different approach was pursued by Hart and Mas-Colell (1987).
- To each game (N, v) one can associate a real number P(N,v) (or, simply, P(v)), its *potential*.
- ➤ The "partial derivative" of P is defined as

 $D^{i}(P)(N, v) = P(N,v) - P(N \setminus \{i\}, v_{|N \setminus \{i\}})$

Theorem 3 (Hart and Mas-Colell 1987) There is a unique map

- P, defined on the set of all finite games, that satisfies:
- 1) $P(\emptyset, v_0) = 0$,

2) $\Sigma_{i \in \mathbb{N}} D^i P(N,v) = v(N).$

Moreover, $D^{i}(P)(N, v) = \phi_{i}(v)$. [$\phi(v)$ is the Shapley value of v]

- \succ there are formulas for the calculation of the potential.
- For example, $P(N,v) = \sum_{S \in 2^N} \lambda_S / |S|$ (*Harsanyi dividends*)

 $\begin{aligned} & \phi_1(v) = P(\{1,2,3\},v) - P(\{2,3\},v_{|\{2,3\}}) = 9 - 11/2 = 7/2 \\ & \phi_2(v) = P(\{1,2,3\},v) - P(\{1,3\},v_{|\{2,3\}}) = 9 - 4 = 5 \\ & \phi_3(v) = P(\{1,2,3\},v) - P(\{1,2\},v_{|\{2,3\}}) = 9 - 15/2 = 3/2 \end{aligned}$

Communication networks

Networks \rightarrow several interpretations:

- > A way to describe games in extensive form
- Physical connections between individuals, companies, cities...
- Cooperation or communication restrictions between players
 - communications can be described as undirected or directed graphs, hypergraphs, partitions.

Communication networks as undirected graphs:

- > An *undirected graph* is a pair (N,L) where
- ➢ N is a set of vertices (later, agents or players)
- L={ {i,j} | {i,j}⊆N, i≠j } is the set of edges (bilateral communication links)
- A communication graph (N,L) should be interpreted as a way to model restricted cooperation:
 - Players can cooperate with each other if they are connected (*directly*, or *indirectly* via a path)
 - Indirect communication between two players requires the cooperation of players on a connecting path.

Example

Consider the undirected graph (N,L) with N={1,2,3,4,5,6,7} and L={{1,2}, {2,6}, {5,6}, {1,5}, {3,7}, {4,7}}

Some notations:

 $L_2 = \{\{1,2\}, \{2,6\}\}$ N\L= $\{\{1,2,5,6\}, \{3,4,7\}\}$ set of components

 $L_{-2} = \{\{5,6\}, \{1,5\}, \{3,7\}, \{4,7\}\} \ N \setminus L_{-2} = \{\{1,5,6\}, \{3,4,7\}, \{2\}\}$

 $N(\{\{1,2\},\{2,6\},\{3,7\}\})=\{1,2,6,3,7\}$

Communication within hypergraphs

> A hypergraph is a pair (N, C) with N the player set and C a family of subsets of N.

>An element $H \in C$ is called a *conference*.

Interpretation: communication between players in a hypergraph can only take place within a conference.

Example

Consider the hypergraph (N,C) with N= $\{1,2,3,4,5,6\}$ and C= $\{\{1,3\}, \{3,4,5\}, \{2,5,6\}\}$

Some notations:

A path from 1 to 2: (1,{1,3},3, {3,4,5},4,{3,4,5},5,{2,5,6},2)

N\C={N} set of components

If $R = \{1, 2, 3, 4, 5\}$ then $R \setminus C = \{\{1, 3, 4, 5\}, \{2\}\}$

Communication within cooperation structure

➤A cooperation structure is a pair (N,B) with N the player set and B a partition of the player set N.

➤Interpretation: communication between players in a hypergraph can only take place between any subset of an element of the cooperation structure → Coalition structure (Aumann and Dréze (1974), Myerson (1980), Owen (1977)).

Cooperative games with restricted communication

- A cooperative game describes a situation in which all players can freely communicate with each other.
- Drop this assumption and assume that communication between players is restricted to a set of communication possibilities between players.
- L={ {i,j} | {i,j}⊆N, i≠j } is the set of edges (bilateral communication links)
- A communication graph (N,L) should be interpreted as a way to model restricted cooperation:
 - Players can cooperate with each other if they are connected (*directly*, or *indirectly* via a path)
 - Indirect communication between two players requires the cooperation of players on a connecting path.

Communication situations (Myerson (1977))

A communication situation is a triple (N,v,L)

- (N,v) is a n-person TU-game (represents the economic possibilities of coalitions)
- (N,L) is a communication network (represents restricted communication possibilities)

> The graph-restricted game (N,v^L) is defined as

$$v^{L}(T) = \sum_{C \in T \setminus L} v(C)$$

For each $S \in 2^{\mathbb{N}} \setminus \{\emptyset\}$.

Recall that T\L is the set of maximal connected components in the restriction of graph (N,L) to T

Example

A weighted majority game $(\{1,2,3\},v)$ with the winning quote fixed to 2/3 is considered. The votes of players 1, 2, and 3 are, respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and v(S)=0 for the remaining colitions.

The communication network is

Then,

 $v^{L}(1,2,3)=1$, and $v^{L}(S)=0$ for the other coalitions.

Solutions for communication situations

- Myerson (1977) was the first to study solutions for communication situations.
- A solution Ψ is a map defined for each communication situation (N,v,L) with value in IR^{N.}

PROPERTY 9 Component Efficiency (CE)

For each communication situation (N,v,L) and all C \in N\L it holds that $\sum_{i \in S} \Psi_i(N,v,L) = v(C).$

Property 9 is an "efficiency" condition that is assumed to hold only for those coalitions whose players are able to communicate effectively among them and *are not connected to other players*. (maximal connected components)

Solutions for communication situations

PROPERTY 10 Fairness (F) For each communication situation (N,v,L) and all $\{i,j\} \in L$ it holds that

 $\Psi_{i}(N,v,L) - \Psi_{i}(N,v,L \setminus \{\{i,j\}\}) = \Psi_{j}(N,v,G) - \Psi_{j}(N,v,L \setminus \{\{i,j\}\}).$

Property 10 says that two players should gain or lose in exactly the same way, when a direct link between them is established (or deleted).

Myerson value

Theorem 4 (Myerson (1977))

There exists a unique solution $\mu(N,v,L)$ which satisfies CE and F on the class of communication situations. Moreover,

 $\mu(N,v,L) = \phi(v^L)$

where $\phi(v^L)$ is the shapley vale of the graph-restricted game v^L .

Example

A weighted majority game $(\{1,2,3\},v)$ with the winning quote fixed to 2/3 is considered. The votes of players 1, 2, and 3 are, respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and v(S)=0 for the remaining colitions.

The communication network is

Then,

 $v^{L}(1,2,3)=1$, and $v^{L}(S)=0$ for the other coalitions. We have that

 $\phi(v)=(1/2,0,1/2)$ and $\mu(N,v,L)=\phi(v^L)=(1/3,1/3,1/3)$.

Example (N,v,L) communication situation such that L is the following network and

Note that, for instance, $v^{L}(2,4)=v(2)+v(4)=0$.

Easy to note that that $v^{L}=u_{\{1,2,4\}}+u_{\{2,3,4\}}-u_{N}$

Therefore,

 $\mu(N,v,L) = \phi(vL) = (1/3,2/3,1/3,2/3) - (1/4,1/4,1/4,1/4) = (1/12,5/12,1/12,5/12)$

Application to social networks

- An application of the Shapley value, which uses both the classical one and the one by Myerson (1977), has been proposed by Gómez et al. (2003), to provide a definition of *centrality* in social networks.
- ➤ The proposal is to look at the difference between:
 ➤ µ(N,v,L): the Myerson value, that takes into account the communication structure;
 - $\triangleright \phi(\mathbf{v})$: the Shapley value, that disregards completely the information provided by the graph *L*.

Games and Centrality

- ➤ The centrality of a node refers to the *variation* in power due to the social situation (represented by the graph),
- \succ the power is measured using game theory
- ➢ More precisely, it is the Shapley value of a game that is used as a power index.
- ➢ Gómez et al. (2003) describe general properties of their centrality measure, and in particular, how the abstract structure of the graph influences it.

Example

A weighted majority game $(\{1,2,3\},v)$ with the winning quote fixed to 2/3 is considered. The votes of players 1, 2, and 3 are, respectively, 40%, 20%, and 40%. Then, v(1,3)=v(1,2,3)=1 and v(S)=0 for the remaining colitions.

The communication network is

We have seen that

 $\phi(v)=(1/2,0,1/2)$ and $\mu(N,v,L)=\phi(v^L)=(1/3,1/3,1/3)$. So, the centrality value is 1/3 for player 2 and -1/6 for 1 and 3.