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GAME THEORY

NON-
COOPERATIVE 

THEORY

Games in 
extendive form

(tree games)

Games in strategic
form (normal form)

COOPERATIVE 
THEORY

Games in c.f.f. (TU-
games or 

coalitional games)
Bargaining games NTU-games

�Dominant strategies

�Nash eq. (NE)

�Subgame perfect NE

�NE & refinements

…

�Core

�Shapley 

value

�Nucleolus

� τ-value

�PMAS

….

�Nash sol.

�Kalai-

Smorodinsky

….

�CORE

�NTU-value

�Compromise 

value

…

No binding agreements

No side payments

Q: Optimal behaviour in conflict 

situations

binding agreements

side payments are possible (sometimes)

Q: Reasonable (cost, reward)-sharing



How to share v(N)…

�The Core of a game can be used to exclude those 

allocations which are not stable.

�But the core of a game can be a bit “extreme” (see 

for instance the glove game)for instance the glove game)

�Sometimes the core is empty (see for  example 

the game with pirates)

�And if it is not empty, there can be many 

allocations in the core (which is the best?)



An axiomatic approach (Shapley (1953)

�Similar to the approach of Nash in bargaining: 

which properties an allocation method should 

satisfy in order to divide v(N) in a reasonable way? 

�Given a subset C of GN (class of all TU-games with 

N as the set of players) a (point map) solution on CN as the set of players) a (point map) solution on C

is a map Φ:C→IRN. 

�For a solution Φ we shall be interested in various 

properties…



Symmetry

PROPERTY 1(SYM) For all games v∈GN, 

If v(S∪{i}) = v(S∪{j}) for all S∈2N s.t. i,j∈N\S, 

then Φi(v) = Φj (v).

EXAMPLE

Consider a TU-game ({1,2,3},v) s.t. v(1) = v(2) = v(3) = 0, 

v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20.

Players 2 and 3 are symmetric. In fact: 

v(∅∪{2})= v(∅∪{3})=0 and v({1}∪{2})=v({1}∪{3})=4

If Φ satisfies SYM, then Φ2(v) = Φ3(v)



Efficiency 

PROPERTY 2 (EFF) For all games v∈GN,

∑ i∈NΦi(v) = v(N), i.e., Φ(v) is a pre-imputation.

Null Player Property 

DEF. Given a game v∈GN, a player i∈N s.t. 

v(S∪i) = v(S) for all S∈2N will be said to be a null player.v(S∪i) = v(S) for all S∈2N will be said to be a null player.

PROPERTY 3 (NPP) For all games v∈ GN, Φi(v) = 0 if i is a 

null player.

EXAMPLE Consider a TU-game ({1,2,3},v) such that 

v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, 

v(1, 2, 3) = 6. Player 1 is a null player. Then Φ1(v) = 0 



EXAMPLE Consider a TU-game ({1,2,3},v) such that 

v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) 

= 6, v(1, 2, 3) = 6. On this particular example, if Φ 

satisfies NPP, SYM and EFF we have that

Φ1(v) = 0 by NPP

Φ (v)= Φ (v) by SYMΦ2(v)= Φ3(v) by SYM

Φ1(v)+Φ2(v)+Φ3(v)=6 by EFF

So  Φ=(0,3,3)

But our goal is to characterize Φ on GN. 

One more property is needed.



Additivity 

PROPERTY 2 (ADD) Given v,w ∈GN, 

Φ(v)+Φ(w)=Φ(v +w).

.EXAMPLE Consider two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4 

w(1) =1 

w(2) =0 

v+w(1) =4 

v+w(2) =4 
Φ Φ

Φ

v(2) =4 

v(3) = 1

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

v(1, 2, 3) = 10

w(2) =0 

w(3) = 1 

w(1, 2) =2 

w(1, 3) = 2

w(2, 3) = 3

w(1, 2, 3) = 4

+

v+w(2) =4 

v+w(3) = 2 

v+w(1, 2) =10 

v+w(1, 3) = 6

v+w(2, 3) = 9 

v+w(1, 2, 3) = 14

=



Theorem 1 (Shapley 1953) 

There is a unique point map solution φ defined on GN

that satisfies EFF, SYM, NPP, ADD. Moreover, for any 

i∈N we have that
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Here Π is the set of all permutations σ:N →N of N, while mσ
i(v) is the 

marginal contribution of player i according to the permutation σ, which 

is defined as: 

v({σ(1), σ(2), . . . , σ (j)})− v({σ(1), σ(2), . . . , σ (j −1)}),

where j is the unique element of N s.t. i = σ(j).



Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

Permutation 1 2 3

1,2,3 0 3 2

1,3,2 0 4 1

Probabilistic interpretation: (the “room parable”)

�Players gather one by one in a room to create the “grand coalition”, and each 
one who enters gets his marginal contribution.
�Assuming that all the different orders in which they enter are equiprobable, 
the Shapley value gives to each player her/his expected payoff.

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, 

v(1,3)=1,

v(2,3)=4,

v(1,2,3)=5.

2,1,3 0 3 2

2,3,1 1 3 1

3,2,1 1 4 0

3,1,2 1 4 0

Sum 3 21 6

 φ(v) 3/6 21/6 6/6



Example

(N,v) such that 

N={1,2,3}, 

v(1)=v(3)=0, 

v(2)=3,

v(1,2)=3, v(1,3)=1

v(2,3)=4

v(1,2,3)=5.

x3

(0,0,5)

(0,3,2)

C(v)

Marginal vectors

123�(0,3,2)

132�(0,4,1)

213�(0,3,2)

231�(1,3,1)

321�(1,4,0)

312�(1,4,0)

(0,4,1) φ φ φ φ(v)=(0.5, 3.5,1)v(1,2,3)=5.

x2

X1

(5,0,0)

(0,5,0)

(0,4,1)

(1,3,1)

 φ φ φ φ(v)=(0.5, 3.5,1)



Exercise 

Calculate the 

Shapley value of 

the TU-game

(N,v) such that 

N={1,2,3}, 

v(1) =3

v(2) =4 

Permutation 1 2 3

1,2,3

1,3,2

2,1,3

2,3,1

3,2,1v(2) =4 

v(3) = 1

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

v(1, 2, 3) = 10

3,2,1

3,1,2

Sum

 φ(v)



Example

(Glove game with L={1,2}, R={3})

v(1,3)=v(2,3)=v(1,2,3)=1, v(S)=0 otherwise

(0,0,1)

Permutation 1 2 3

1,2,3 0 0 1

1,3,2 0 0 1

2,1,3 0 0 1
C(v)

(1,0,0)

(0,0,1)

I(v)

2,3,1 0 0 1

3,2,1 0 1 0

3,1,2 1 0 0

Sum 1 1 4

 φ(v) 1/6 1/6 4/6

(0,1,0)

 φ(v)(1/6,1/6,2/3)



Unanimity games (1)

�DEF Let T∈2N\{∅}. The unanimity game on T is 
defined as the TU-game (N,uT) such that

1 if T⊆S

uT(S)=

0 otherwise

�Note that the class GN of all n-person TU-games is a 
vector space (obvious what we mean for v+w and 
 αv for v,w∈GN and α∈IR).

� the dimension of the vector space GN is 2n-1, where 
n=|N|.

�{uT|T∈2N\{∅}} is an interesting basis for the vector 
space GN.



Unanimity games (2)

�Every coalitional game (N, v) can be written as a 

linear combination of unanimity games in a unique 

way, i.e., v =∑S∈2
N λS(v)uS . 

�The coefficients λS(v), for each S∈2N, are called S

unanimity coefficients of the game (N, v) and are 

given by the formula: λS(v) = ∑T∈2
S (−1)s−t v(T ).



.EXAMPLE Unanimity coefficients of ({1,2,3},v)

v(1) =3

v(2) =4 

v(3) = 1

v(1, 2) =8 

 λ1(v) =3

 λ2(v) =4 

 λ3(v) = 1

 λ{1,2}(v) =-3-4+8=1

λS(v) = ∑T∈2
S (−1)s−t v(T )

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

v(1, 2, 3) = 10

 λ{1,2}(v) =-3-4+8=1

 λ{1,3}(v) = -3-1+4=0

 λ{2,3}(v) = -4-1+6=1 

 λ{1,2,3}(v) = -3-4-1+8+4+6-10=0

 v=3u{1}(v)+4u{2}(v)+u{3}(v)+u{1,2}(v)+u{2,3}(v)



Sketch of the Proof of Theorem1

�Shapley value satisfies EFF, SYM, NPP, ADD 

(“easy” to prove).

�Properties EFF, SYM, NPP determine φ on the class 

of all games αv, with v a unanimity game and α∈IR.

�Let S∈2N. The Shapley value of the unanimity game 

(N,uS) is given by (N,uS) is given by 

α/|S|   if i∈S

φi(αuS)=

0 otherwise

�Since the class of unanimity games is a basis for the 

vector space, ADD allows to extend φ in a unique 

way to GN.



�Let mσ’
i(v)=v({σ’(1),σ’(2),…,σ’(j)})− v({σ’(1),σ’(2),…, σ’(j −1)}), 

where j is the unique element of N s.t. i = σ’(j).

�Let S={σ’(1), σ’(2), . . . , σ’(j)}.

�Q: How many other orderings σ∈Π do we have in which 

{σ(1), σ(2), . . . , σ (j)}=S and i = σ(j)?

�A: they are precisely (|S|-1)!×(|N|-|S|)! 

An alternative formulation

�A: they are precisely (|S|-1)!×(|N|-|S|)! 

�Where (|S|-1)! Is the number of orderings of S\{i} and (|N|-

|S|)! Is the number of orderings of N\S

�We can rewrite the formula of the Shapley value as the 

following:
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Alternative properties

� PROPERTY 5 (Anonymity, ANON) Let (N, v)∈GN, σ:N →N be a 

permutation. Then, Φ
σ(i)(σ v) = Φi(v) for all i∈N. 

�Here σv is the game defined by: σv(S) = v(σ(S)), for all S∈2N.

Interpretation: The meaning of ANON is that whatever a player gets 
via Φ should depend only on the structure of the game v, not on his 
“name”, i.e., the way in which he is labelled.“name”, i.e., the way in which he is labelled.

� DEF (Dummy Player) Given a game (N, v), a player i∈N s.t. 

v(S∪{i}) =v(S)+v(i) for all S∈2N will be said to be a dummy player.

• PROPERTY 6 (Dummy Player Property, DPP) Let v ∈GN. If i∈N is 

a dummy player, then Φi(v) =v(i).

NB: often NPP and SYM are replaced by DPP and ANON, 

respectively.



Characterization on a subclass
� Shapley and Shubik (1954) proposed to use the Shapley value as a 

power index,

� ADD property does not impose any restriction on a solution map 

defined on the class of simple games SN, which is the class of games 

such that v(S) ∈{0,1} (often is added the requirement that v(N) = 1). 

� Therefore, the classical conditions are not enough to characterize the 

Shapley–Shubik value on SN. 

� We need a condition that resembles ADD and can substitute it to get a 

characterization of the Shapley–Shubik (Dubey (1975)) index on SN:

PROPERTY 7 (Transfer, TRNSF) For any v,w ∈S(N), it holds:

Φ(v ∨ w)+Φ(v ∧ w) = Φ(v)+Φ(w).

Here v ∨ w is defined as (v ∨ w)(S) = (v(S) ∨ w(S)) = max{v(S),w(S)}, 

and v ∧ w is defined as (v ∧ w)(S) = (v(S) ∧ w(S)) = min{v(S),w(S)}, 



.EXAMPLE Two TU-games v and w on N={1,2,3}

+

v(1) =0

v(2) =1 

v(3) = 0

v(1, 2) =1 =

w(1) =1 

w(2) =0 

w(3) = 0 

w(1, 2) =1 

Φ Φ v∧w(1) =0 

v∧w(2) =0 

v∧w(3) = 0 

v∧w(1, 2) =1 

Φ v∨w(1) =1 

v∨w(2) =1 

v∨w(3) = 0 

v∨w(1, 2) =1 

Φ

∧ ∨

++v(1, 2) =1 

v(1, 3) = 1

v(2, 3) = 0 

v(1, 2, 3) = 1

=w(1, 2) =1 

w(1, 3) = 0

w(2, 3) = 1

w(1, 2, 3) = 1

v∧w(1, 3) = 0

v∧w(2, 3) = 0

v∧w(1, 2, 3) = 1

v∨w(1, 3) = 1

v∨w(2, 3) = 1 

v∨w(1, 2, 3) = 1

+



Reformulations

Other axiomatic approaches have been provided for the 

Shapley value, of which we shall briefly describe those by 

Young and by Hart and Mas-Colell.

PROPERTY 8 (Marginalism, MARG) A map Ψ : GN→IRN 

satisfies MARG if, given v,w∈GN, for any player i∈N s.t.satisfies MARG if, given v,w∈GN, for any player i∈N s.t.

v(S∪{i}) −v(S) = w(S∪{i}) −w(S) for each S∈2N,

the following is true:

Ψi(v) = Ψi(w).

Theorem 2 (Young 1988) There is a unique map Ψ defined on 

G(N) that satisfies EFF, SYM, and MARG. Such a Ψ 

coincides with the Shapley value.



.EXAMPLE Two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4 

v(3) = 1

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

w(1) =2 

w(2) =3 

w(3) = 1 

w(1, 2) =2 

w(1, 3) = 3

w(2, 3) = 5

w(∅∪{3})- w(∅) = v(∅∪{3})- v(∅)=1

w({1}∪{3})- w({1}) = v({1}∪{3})- v({1})=1

w({2}∪{3})- w(∅) = v({2}∪{3})- v(∅)=1

w({1,2}∪{3})- w({1,2}) = v({1,2}∪{3})- v({1,2)=1

v(2, 3) = 6 

v(1, 2, 3) = 10

w(2, 3) = 5

w(1, 2, 3) = 4

Ψ3(v) = Ψ3(w).



Potential

� A quite different approach was pursued by Hart and Mas-
Colell (1987). 

� To each game (N, v) one can associate a real number 
P(N,v) (or, simply, P(v)), its potential. 

� The “partial derivative” of P is defined as

Di(P )(N, v) = P(N,v)−P(N\{i},v|N\{i})D (P )(N, v) = P(N,v)−P(N\{i},v|N\{i})

Theorem 3 (Hart and Mas-Colell 1987) There is a unique map 

P, defined on the set of all finite games, that satisfies:

1) P(∅, v0) = 0,

2) Σi∈N DiP(N,v) = v(N).

Moreover, Di(P )(N, v) = φi(v). [φ(v) is the Shapley value of v]



� there are formulas for the calculation of the potential. 

� For example, P(N,v)=∑S∈2
N λS/|S| (Harsanyi dividends)

Example

v(1) =3

v(2) =4 

v(3) = 1

v(1, 2) =8 

 λ1(v) =3

 λ2(v) =4 

 λ3(v) = 1

 λ{1,2}(v) =1

P({1,2,3},v)=3+4+1+1/2+1/2=9

P({1,2},v|{1,2})=3+4+1/2=15/2

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

v(1, 2, 3) = 10

 λ{1,2}(v) =1

 λ{1,3}(v)=0

 λ{2,3}(v)=1 

 λ{1,2,3}(v)=0

P({1,3},v|{1,3})=3+1=4

P({2,3},v|{2,3})=4+1+1/2=11/2

φ1(v)=P({1,2,3},v)-P({2,3},v|{2,3})=9-11/2=7/2

φ2(v)=P({1,2,3},v)-P({1,3},v|{2,3})=9-4=5
φ3(v)=P({1,2,3},v)-P({1,2},v|{2,3})=9-15/2=3/2



Communication networks

Networks �several interpretations:

�A way to describe games in extensive form

�Physical connections between individuals, 

companies, cities…

�Cooperation or communication restrictions �Cooperation or communication restrictions 

between players 

�communications can be described as undirected or 

directed graphs, hypergraphs, partitions.



Communication networks as undirected graphs:

�An undirected graph is a pair (N,L) where 

�N is a set of vertices (later, agents or players)

�L={ {i,j} | {i,j}⊆N, i≠j } is the set of edges (bilateral 

communication links)

�A communication graph (N,L) should be interpreted 

as a way to model restricted cooperation:as a way to model restricted cooperation:

�Players can cooperate with each other if they are 

connected (directly, or indirectly via a path)

�Indirect communication between two players requires 

the cooperation of players on a connecting path.



Example

Consider the undirected graph (N,L) with N={1,2,3,4,5,6,7} and 

L={{1,2}, {2,6}, {5,6}, {1,5}, {3,7}, {4,7}}

1 2 3 4

765

Some notations:

L2 ={{1,2}, {2,6}} N\L={{1,2,5,6},{3,4,7}} 

set of components

L-2 ={{5,6}, {1,5}, {3,7}, {4,7}} N\L-2={{1,5,6},{3,4,7},{2}} 

N({{1,2}, {2,6}, {3,7}})={1,2,6,3,7}

765



Example

Consider the hypergraph (N,C) with N={1,2,3,4,5,6} and 

C={{1,3}, {3,4,5}, {2,5,6}}

�A hypergraph is a pair (N, C) with N the player set and C a 

family of subsets of N. 

�An element H∈C is called a conference.

�Interpretation: communication between players in a hypergraph 

can only take place within a conference.

Communication within hypergraphs

Some notations:

A path from 1 to 2: (1,{1,3},3, 
{3,4,5},4,{3,4,5},5,{2,5,6},2)

N\C={N} set of components

If R={1,2,3,4,5} then R\C={{1,3,4,5},{2}}

C={{1,3}, {3,4,5}, {2,5,6}}

1 2

3 4

6

5



�A cooperation structure is a pair (N,B) with N 
the player set and B a partition of the player set 
N. 
�Interpretation: communication between players 

Communication within cooperation structure

�Interpretation: communication between players 
in a hypergraph can only take place between 
any subset of an element of the cooperation 
structure �Coalition structure (Aumann and 
Dréze (1974), Myerson (1980), Owen (1977)).



�A cooperative game describes a situation in which all 

players can freely communicate with each other.

�Drop this assumption and assume that communication 

between players  is restricted to a set of communication 

possibilities between players.

� L={ {i,j} | {i,j}⊆N, i≠j } is the set of edges (bilateral 

communication links)

Cooperative games with restricted communication

communication links)

�A communication graph (N,L) should be interpreted as a 

way to model restricted cooperation:

�Players can cooperate with each other if they are connected 

(directly, or indirectly via a path)

� Indirect communication between two players requires the 

cooperation of players on a connecting path.



Communication situations (Myerson (1977))

�A communication situation is a triple (N,v,L)

�(N,v) is a n-person TU-game (represents the economic 
possibilities of coalitions)

�(N,L) is a communication network (represents restricted 
communication possibilities)

� The graph-restricted game (N,vL) is defined as� The graph-restricted game (N,vL) is defined as

vL(T)=∑C∈T\Lv(C)

For each S∈2N\{∅}.

Recall that T\L is the set of maximal connected 
components in the restriction of graph (N,L) to T



Example

A weighted majority game ({1,2,3},v) with the 

winning quote fixed to 2/3 is considered. The votes of 

players 1, 2, and 3 are, respectively, 40%, 20%, and 

40%. Then, v(1,3)=v(1,2,3)=1 and v(S)=0 for the 

remaining colitions.

The communication network isThe communication network is

1 2 3
Then,

vL(1,2,3)=1, and vL(S)=0 for the other coalitions.



� Myerson (1977) was the first to study solutions for communication 

situations.

� A solution Ψ is a map defined for each communication situation 

(N,v,L) with value in IRN.

PROPERTY 9 Component Efficiency (CE)

For each communication situation (N,v,L) and all C∈N\L it holds that 

Solutions for communication situations

For each communication situation (N,v,L) and all C∈N\L it holds that 

∑i∈S Ψi(N,v,L) = v(C).

� Property 9 is an “efficiency” condition that is assumed to hold only 

for those coalitions whose players are able to communicate effectively 

among them and are not connected to other players. (maximal 

connected components)



PROPERTY 10 Fairness (F) For each communication situation 

(N,v,L) and all {i,j}∈L it holds that

Ψi(N,v,L) −Ψi(N,v,L\{{i, j}}) = Ψj(N,v,G)− Ψj(N,v,L\{{i, j }}).

Solutions for communication situations

Ψi(N,v,L) −Ψi(N,v,L\{{i, j}}) = Ψj(N,v,G)− Ψj(N,v,L\{{i, j }}).

� Property 10 says that two players should gain or lose in exactly 

the same way, when a direct link between them is established (or 

deleted).



Theorem 4 (Myerson (1977))

There exists a unique solution  µ(N,v,L) which 

satisfies CE and F on the class of communication 

situations. Moreover,  

Myerson value

µ(N,v,L)=φ(vL)

where φ(vL) is the shapley vale of the graph-restricted 

game vL.



Example

A weighted majority game ({1,2,3},v) with the 

winning quote fixed to 2/3 is considered. The votes of 

players 1, 2, and 3 are, respectively, 40%, 20%, and 

40%. Then, v(1,3)=v(1,2,3)=1 and v(S)=0 for the 

remaining colitions.

The communication network isThe communication network is

1 2 3
Then,

vL(1,2,3)=1, and vL(S)=0 for the other coalitions.

We have that

φ(v)=(1/2,0,1/2) and µ(N,v,L)= φ(vL)=(1/3,1/3,1/3). 



Example (N,v,L) communication situation 

such that L is the following network and 

v=u{2,4} 1 2

43

Note that, for instance, vL(2,4)=v(2)+v(4)=0.

L

Note that, for instance, vL(2,4)=v(2)+v(4)=0.

Easy to note that that vL=u{1,2,4}+u{2,3,4}-uN

Therefore, 

µ(N,v,L)=φ(vL)=(1/3,2/3,1/3,2/3)-(1/4,1/4,1/4,1/4)

=(1/12,5/12,1/12,5/12)



Application to social networks
�An application of the Shapley value, which uses 

both the classical one and the one by Myerson 

(1977), has been proposed by Gómez et al. (2003), 

to provide a definition of centrality in social 

networks.

�The proposal is to look at the difference between:�The proposal is to look at the difference between:

�µ(N,v,L): the Myerson value, that takes into account the 

communication structure;

�φ(v): the Shapley value, that disregards completely the 

information provided by the graph L.



Games and Centrality
�The centrality of a node refers to the variation in 

power due to the social situation (represented by the 

graph), 

�the power is measured using game theory 

�More precisely, it is the Shapley value of a game �More precisely, it is the Shapley value of a game 

that is used as a power index. 

�Gómez et al. (2003) describe general properties of 

their centrality measure, and in particular, how the 

abstract structure of the graph influences it.



Example

A weighted majority game ({1,2,3},v) with the 

winning quote fixed to 2/3 is considered. The votes of 

players 1, 2, and 3 are, respectively, 40%, 20%, and 

40%. Then, v(1,3)=v(1,2,3)=1 and v(S)=0 for the 

remaining colitions.

The communication network isThe communication network is

1 2 3

We have seen that

φ(v)=(1/2,0,1/2) and µ(N,v,L)=φ(vL)=(1/3,1/3,1/3). 

So, the centrality value is 1/3 for player 2 and −1/6 for 

1 and 3.


