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Top secret

The examples will be revealed only in the course.



Relevant characteristics

Decision makers (=players) engaged in an interactive decision
problem:
- more than one decision maker (DM) (=player). [The “easy
case”, 1 DM, is left to Decision Theory (DT)]
- the result is determined by the choices made by each player
- the decision makers’ preferences w.r.t. outcomes are (generally
speaking) different.

Classical assumptions about players: rational and intelligent.



Relevant “parameters”

- in the three examples, choices are “contemporary”
- players know the relevant data of the interaction decision
problem:
- - available strategies
- - payoffs (!)
- - rationality and intelligence of each player
- each player knows that all players know what is listed above
- each player knows that each player knows...

COMMON KNOWLEDGE

- not available the possibility of binding agreements:

NON COOPERATIVE GAMES



Basic model

(X ,E , h,⊒) where:
- X set of alternatives (choices) available to the DM
- E set of outcomes
- h : X → E maps alternatives into outcomes

- ⊒ total preorder on E (math object to describe the preferences
on E of the DM)

Total preorder on E is a binary relation on E which is:
- reflexive: ∀x ∈ E : x ⊒ x
- transitive: ∀x , y , z ∈ E : (x ⊒ y ∧ y ⊒ z)⇒ x ⊒ z
- total: ∀x , y ∈ E : (x ⊒ y ∨ y ⊒ x)

Very important remark: the rationality assumption is essentially
subsumed in the transitivity condition.



Utility functions

Under “reasonable” conditions on E and ⊒ there exists u : E → ℝ
s.t.:
∀x , y ∈ E : x ⊒ y ⇔ u(x) ≥ u(y)

We say that the (utility) function u represents the preferences of
the DM

“Reasonable” conditions are:
- E is countable
- “continuity” conditions on E (topological space) and ⊒

u is not unique. E.g., given any strictly increasing � : ℝ→ ℝ,
� ∘ u represents also ⊒



Squeezing the model

We have: (X ,E , h,⊒).
Using utility functions, we get: (X ,E , h, u). To which we can
associate the diagram:

X
h−→ E

u−→ ℝ

Composition of functions... f = u ∘ h:

X
f−→ ℝ

Or, (X , f ). Nice simplification.

Did we dispose of the baby, together with the wastewater?
NO, if we are not interested in dividing objective and subjective
part
YES, of paramount importance for mechanism design



Relevant characteristics, I: “objective” part

Basic model uses the idea of state of nature: (X ,S ,E , h,⊒).
- X as before (alternatives)
- S set of the “states of nature”
- E as before (outcomes)
- h : X × S → E maps any couple (alternative, state of nature) to
an outcome.

A useful matrix:

X
∖
∖S s1 . . . sn

x1 e11 . . . e1n

. . . . . . . . . . . .

xm em1 . . . emn



Relevant characteristics, II: “subjective” part

- ⊒ as before? NO! Nonsense! Preferences on E are not enough.

Example: Betting on a dice.

Two alternatives:
- bet 1 euro: if 5 shows, you have a net gain of 3 euro, if not, you
lose your euro
- no bet: nothing happens

X
∖
∖S 1 2 3 4 5 6

to bet −1 −1 −1 −1 3 −1

not to bet 0 0 0 0 0 0



Relevant characteristics, II: “subjective” part

Relevant outcomes are: −1, 0, 3 (euro). So, we can take
E = {−1, 0, 3}.
Assume the DM is a “standard person”, that is:

3 ⊐ 0 ⊐ −1

What can we say? NOTHING relevant for our problem.

Preferences must be on the rows of the matrix!
Do you prefer the first row or the second one?

Where are we going to?



Relevant characteristics, II: “subjective” part

Just add another line to the matrix:

p1 . . . pn

X
∖
∖S s1 . . . sn

x1 e11 . . . e1n

. . . . . . . . . . . .

xm em1 . . . emn

Probability that a state of nature will be the true one.
So, choosing x ∈ X has the effect of inducing a probability distribution on E .

If we have u : E → ℝ, to x we can associate:

n∑
i=1

p(si )u(h(x , si ))

the expected utility from choosing x .

Our DM has simply to choose x̄ ∈ X that maximizes the expected utility.



The dice example

Let’s consider the dice example.

The utility values associated to the two possible choices are (notice
that S = {1, . . . , 6}):

- x = “to bet”:
∑6

i=1
1
6u(h(x , i)) = 1

6u(3) + 5
6u(−1)

- x = “not to bet”:
∑6

i=1
1
6u(h(x , i)) = 1

6 6u(0) = u(0)

Notice that “to bet” induces a probability distribution (“lottery”)
on E . This lottery assigns probability 1

6 to outcome 3, and 5
6 to

outcome −1. Similarly, the lottery induced by “not to bet” assigns
probability 1 to 0.



Relevant characteristics, II: “subjective” part

What did we leave out?
- from where probabilities on S do come?

- - are “given”, “objective” probabilities (prob that we get 5 from
the dice is 1/6).
von Neumann and Morgenstern (vNM) developed the theory for
this case: decision under risk

- - are “subjective” (prob that this nice girl will marry me in 2010?)
Savage deduces subjective probabilities from preferences on the
rows: decision under uncertainty



Relevant characteristics, II: “subjective” part

- utility functions are “vNM” utility functions!
- - are defined up to an affine (strictly increasing) transformation
(only �(t) = at + b. with a > 0 is OK).
- - the computation of expected utility is a meaningful operation
for them

Dice example (e ∈ E = {−1, 0, 3}):
u(e) =

√
e + 1; u(e) = e + 1; u(e) = (e + 1)2.

Risk averse, neutral, loving.



Risk aversion and friends

Assume that E ⊆ ℝ is an interval.

Remark: Convex subsets of ℝ are precisely the intervals.

Consider the choice between:
- ē ∈ E (it is the lottery that assigns probability 1 to ē)
- a “lottery” on E : (p1, e1; . . . ; pn, en) such that the expected
value of this lottery is precisely ē (

∑n
i=1 piei = ē)

We can have three cases:
-
∑n

i=1 piu(ei ) < u(ē): risk adverse DM
-
∑n

i=1 piu(ei ) = u(ē): risk neutral DM
-
∑n

i=1 piu(ei ) > u(ē): risk loving DM



Remarks on risk aversion and friends

Remark: of course, the two lotteries that we consider can be
induced by the choice of two alternatives in X (“to bet”, “not to
bet”; buy shares or buy corporate bonds; to buy the rights for
drilling in some area, or not).

Remark: the assumption that E ⊆ ℝ is quite important. It assures
us that it is meaningful to make the calculations

∑n
i=1 piei . A

typical case is when elements of E are amounts of money.

Question: in the dice example we had E ⊆ ℝ, but E is not an
interval. Why we were speaking of risk neutrality et cetera?



Game form

A game form (in strategic form), with two players, is: (X ,Y ,E , h).

New aspects w.r.t. decision theory:
- two DMs (we shall call them “players”), so two sets of available
alternatives (choices, but here we use the word “strategies”)
- h : X × Y → E is the map that converts a couple of strategies
(one for each player) into an outcome.

Easy to generalize to a finite set of players N: (N, (Xi )i∈N ,E , h).
With h :

∏
i∈N Xi → E .



Preferences of the players

To get a game we need a second ingredient, the preferences of the
players.

If we have two players (called I and II ), each will have his
preferences.
So: ⊒I ,⊒II .
Each one is a total preorder on E .
We shall represent them by utility functions: u and v .

We shall often make the assumption that these utility functions are
vNM.



Game in strategic form
Patching all together (game form + preferences)...

We use utility functions. In the 2 players case:
(X ,Y ,E , h, u, v).

The corresponding diagram:

X × Y -h
E
�
�
�
�3

u

Q
Q
Q
Qs

v

ℝ

ℝ



Game in strategic form: squeezed
Still in the 2 players case:
(X ,Y , f , g).

Where f = u ∘ h and g = v ∘ h.

The squeezed diagram:

X × Y ��
��
��

��
�1

PPPPPPPPPq

f

g

ℝ

ℝ



Looking for a solution

What a player will/should do?

- “will”: the descriptive point of view. Aiming at predicting what
players will do in the model and hence in the real game
- “should”: the normative point of view. Rationality is based on a
teleological description of the players. Players have an “end” (not
like apples, stones, molecules). So, they could do the “wrong”
thing. We could give them suggestions.

Would you suggest a stone what to do? Very relevant difference
between hard sciences and social sciences.

Back to the “solution” issue. Can we say something on the basis
of our assumptions?



Domination among strategies

From decision theory we borrow the idea of domination among
strategies:
- x1 is (obviously) better than x2 if:

h(x1, s) ⊐ h(x2, s) for every s ∈ S

Trivial modification:
h(x1, y) ⊐ h(x2, y) for every y ∈ Y

We shall say that x1 (strongly) dominates x2.
So, if x1 dominates any other x ∈ X , then x1 is the solution



Prisoner’s dilemma

The game is:

I
∖
∖II L R

T 3 3 1 4

B 4 1 2 2

Obviously B and R are dominant strategies (for I and II
respectively).
So, we have the solution. Nice and easy.

But... the outcome is inefficient!
Both players prefer the outcome deriving from (T , L).

And so? The problem is that players are (assumed to be) rational
and intelligent.



Strategies to avoid

A strategy which is (strongly) dominated by another one will not
be played.

So we can delete it. But then could appear new (strongly)
dominated strategies for the other player. We can delete them.
And so on...

Maybe players are left with just one strategy each. Well, a new
way to get a solution for the game.

Technically: solution via iterated elimination of dominated
strategies.



Strategies to avoid: examples

Example 1:

I
∖
∖II L R

T 2 1 1 0

M 1 1 2 0

B 0 0 0 1

Example 2:
Beauty contest.

Important:
- Common knowledge (CK) issues, as seen in the beauty contest.
- Dominance approach: no conjecture is needed about what the
others could do.



More on dominance

We have three different dominance relations. Given x1, x2 ∈ X , we
shall say that:
- x1 strongly dominates x2 if f (x1, y) > f (x2, y) for all y ∈ Y .
- x1 strictly dominates x2 if f (x1, y) ≥ f (x2, y) for all y ∈ Y and
there exists y ∈ Y s.t. f (x1, y) > f (x2, y).
- x1 weakly dominates x2 if f (x1, y) ≥ f (x2, y) for all y ∈ Y .

Iterated elimination of strongly dominated strategies is
independent of the order of elimination (provided that at any
round at least one strongly dominated strategy is deleted, if any
exists). This is not true for strictly dominated strategies.

Remark: the terminology in use in GT is different from that used
here. Usually strongly dominance is referred as “dominance” or
“strict dominance”, while strict dominance is called “weak
dominance”, and weak dominance is not mentioned at all.



More on dominance

Exercise: provide an example of “non independence of the order of
elimination” for strictly dominated strategies.

Exercise: provide an example of a game with a NE (x̄ , ȳ) s.t. both
x̄ and ȳ are strictly dominated strategies.

Exercise: provide an example in which iterated elimination of
strictly dominated strategies eliminates a NE.



Nash equilibrium

Basic solution concept, for games in strategic form.

(2 players only) Given G = (X ,Y , f , g), (x̄ , ȳ) ∈ X × Y is a Nash
equilibrium for G if:

▶ f (x̄ , ȳ) ≥ f (x , ȳ) for all x ∈ X

▶ g(x̄ , ȳ) ≥ g(x̄ , y) for all y ∈ Y

Existence: Nash’s theorem: mixed strategies... See later
Difficulties:
- not uniqueness
- some Nash equilibria are not sensible (tomorrow)
- inefficiency (Adam Smith was wrong?)



Nash equilibrium and dominance

Theorem:
If a game has a unique couple that survives iterated elimination of
dominated strategies, that this couple is a Nash equilibrium.

In particular, a couple of dominating strategies is a Nash
equilibrium.

So, in the prisoner’s dilemma, (B,R) is the (NB: unique) Nash
equilibrium.

So, Nash equilibrium can give an outcome which is inefficient.



Nash equilibrium and dominance

Remark: it happens that “externalities” are relevant!

Interesting decomposition for the PD:

I
∖
∖II L R

T 0 0 1 1

B 1 1 2 2

+

I
∖
∖II L R

T 3 3 0 3

B 3 0 0 0

Note for later (Wednesday): PD is a potential game.



Nash equilibria: examples

Example (battle of the sexes, BoS): (T , L), (B,R) N.E. Not
unique, in an essential way

I
∖
∖II L R

T 2 1 0 0

B 0 0 1 2

Example (coordination game): (T , L), (B,R) N.E. Not unique, in
an essential way

I
∖
∖II L R

T 1 1 0 0

B 0 0 1 1



Nash equilibrium: not unique

The battle of the sexes and the coordination game (and many
others) have more than one NE.

BIG ISSUE.
- players may have different (opposite) preferences on the
equilibrium outcomes (see BoS)
- it is not possible to speak of equilibrium strategies. In the BoS T
is an equilibrium strategy? Or B?



One more problem

Example: matching pennies (MP)

I
∖
∖II L R

T −1 1 1 − 1

B 1 − 1 −1 1

There is no equilibrium.

But Nash is famous (also) because of his existence thm (1950).
But MP is a zero-sum game. So, even vN (1928) guarantees that
it has an equilibrium.
Where do we find it? Usual math trick: extend (ℕ to ℤ; sum to
integral; solution to weak solution).



Mixed strategies

The basic idea is that the player does not choose a strategy, but a
probability distribution on strategies.

Example: I have an indivisible object and I must assign it in a fair
way to one of you. It is quite possible that the best solution is to
decide to assign it randomly (with a uniform probability
distribution).

Example: I am a DM and there are two optimal solutions. I will flip
a coin, not willing to starve as Buridano’ donkey. Or I should say
l’âne de Buridan? Or maybe one should read Aristotle’s De Caelo?



Mixed extension of a game

Let’s apply it to games in strategic form.
Given a game G = (X ,Y , f , g), assume X ,Y are finite, and let
X = {x1, . . . , xm}, Y = {y1, . . . , yn}.
The mixed extension of G is Γ = (Δ(X ),Δ(Y ), f̂ , ĝ).
Where:

Δ(X ) is the set of probability distributions on X . An element of
Δ(X ) is p = (p1, . . . , pm) ∈ ℝm. With...
f̂ (p, q) =

∑m
i=1

∑n
j=1 piqj f (xi , yj). Of course,

(p, q) ∈ Δ(X )×Δ(Y ).

Notice that Γ is itself a game in strategic form. So, no need to
redefine concepts (in particular, NE).



Interpretation?

Of course, there is no mathematical problem in the definition of Γ.

But: f̂ and ĝ can still interpreted as payoffs for the players?

The answer is YES if the original u and v are vNM utility
functions. Otherwise, we cannot attach a meaning to the
operations that brought us form G to Γ.



Nash existence theorem

Theorem:
Given a game (X ,Y , f , g) s.t.:
- X ,Y are (not empty) convex, closed and bounded subsets of
finite-dimensional Euclidean spaces
- f , g are continuous (on X × Y )
- f (⋅, y) and g(x , ⋅) are concave (quasi concave is enough)

Note: the mixed extension of a finite game satisfies these
assumptions.



Proof

Idea of best-reply (correspondence).
RI (y) = argmaxx∈X{f (x , y)}
Similarly for RII .

Remark: are correspondences (multi-valued, possibly empty valued:
make examples yourselves).

From RI and RII we build R : X × Y ⇉ X × Y , defined as
R(x , y) = RI (y)× RII (x).
R satisfies the assumptions of Kakutani’s thm. So, R has a “fixed
point”, i.e. there is (x̄ , ȳ) ∈ R(x̄ , ȳ).

Lemma: (x̄ , ȳ) ∈ R(x̄ , ȳ) iff (x̄ , ȳ) is NE (NB: no assumption is
needed).



Mixed extension and equilibria for BoS

The BoS is:

I

∖
∖II L R

T 2 1 0 0

B 0 0 1 2

Instead of using ((p1, p2), (q1, q2)), we use: ((p, 1− p), (q, 1− q)),
with p, q ∈ [0, 1]. So:
- f̂ ((p, 1− p), (q, 1− q)) = 2pq + 1(1− p)(1− q).

Given q̄, the best reply for player I to q̄, is (easily seen from:
f̂ ((p, 1− p), (q̄, 1− q̄)) = (3q̄ − 1)p + (1− q̄)):

- {0} for 0 ≤ q̄ < 1/3
- [0, 1] for q̄ = 1/3
- {1} for 1/3 < q̄ ≤ 1



Mixed extension and equilibria for BoS

The best reply for II is:

- {0} for 0 ≤ p̄ < 2/3
- [0, 1] for p̄ = 2/3
- {1} for 2/3 < p̄ ≤ 1

We can draw the picture that is in the following slide.

Notice that it can be proved that:

(x̄ , ȳ) ∈ R(x̄ , ȳ)⇔
{

(x̄ , ȳ) ∈ gph(RII )
(ȳ , x̄) ∈ gph(RI )

or that:

(x̄ , ȳ) ∈ R(x̄ , ȳ)⇔ (x̄ , ȳ) ∈ (gph(RII )) ∩ (gph(R−1
I ))

So, we see from the picture that there are 3 NE



BoS: graphs of the best reply correspondences

-
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g
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best reply of II

g

Nash equilibrium

1



Mixed extension of BoS: some comments

- Notice that the two NE that we had for the original game are
preserved in the mixed extension. This is a general fact, valid for
all games in strategic form. The original equilibria are to be found
as equilibria in the mixed extension having all of their coordinates
represented by a Dirac probability measure (probability
concentrated on a single element of X , et cetera).

- The new, mixed equilibrium could be seen as a reasonable
compromise, in the sense that each of the two players is precisely
in the same situation compared with the two pure NE. The
problem is that the compromise is inefficient. The payoff in the
mixed equilibrium is 2/3 for each player.



Mixed extension of BoS: some comments

Exercise: is it correct to say that player I prefers the NE (T ,R) to
(B, L) because in the first one has an utility value higher that
player II? If not, why he prefers the NE (T ,R) to (B, L)?

Exercise: why can we say that players are “equally maltreated” in
the mixed equilibrium?

Exercise: prove that NE for a finite game G do not disappear
passing to Γ.



BoS and correlated equilibria

- Why this inefficiency? Because, due to the fact that the players
use different (independent) random devices, a lot of probability is
“lost” in the sense that it is assigned to cells that contain (0, 0)
(5/9 is the probability of getting the payoffs (0, 0)).

- Any way to avoid this? Yes, using the same random device for
both players.

- Consider the following (non binding) agreement: “It is tossed a
fair coin, If head shows, player I will play T and player II will play
R; if tails show, I plays B and II plays L”.

This agreement is quite stable. It is an example of correlated
equilibrium (Aumann, 1974).
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