PROBLEMI, MODELLI, DECISIONI
Decifrare un mondo complesso e conflittuale

Giorgio Gallo

31 gennaio 2006
©2005 Giorgio Gallo
E possibile scaricare, stampare e fotocopiare il testo. Nel caso che se ne stampino singole parti, si deve comunque includere anche la pagina iniziale con titolo ed autore.
Stat rosa pristina nomine, nomina nuda tenemus
(Umberto Eco, “Il nome della rosa”)

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.
(William Shakespeare, “The Tragedy of Hamlet, Prince of Denmark”)

Itaca ti ha dato il bel viaggio,
senza di lei mai ti saresti messo
in viaggio: che cos’altro ti aspetti?
E se la trovi poverta, non per questo Itaca ti avr` a deluso.
Fatto ormai savio, con tutta la tua esperienza addosso
gi` tu avrai capito cio` che Itaca vuole significare.
(Costantinos Kavafis, “Cinquantacinque poesie”)
Indice

Introduzione

<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
<th>Pagine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Problemi e approccio sistemico</td>
<td>1 Problemi</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Un approccio olistico alle decisioni</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Sistemi e processi decisionali</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.2.2 I passi del processo decisionale</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.2.3 Un esempio</td>
<td>10</td>
</tr>
<tr>
<td>1.3 La dimensione dinamica nell’analisi dei sistemi</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.1 Cicli causali</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Stati ed attività</td>
<td>21</td>
</tr>
<tr>
<td>2 La Dinamica dei Sistemi</td>
<td>2.1 Introduzione</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.2 Modello di Richardson</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3 Il linguaggio della dinamica dei sistemi</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Livelli e flussi</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Variabili ausiliarie e costanti</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.4 Analisi della dinamica del sistema</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.5 Ritardi</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Diffusioni di inquinanti</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Inquinamento atmosferico ed effetto serra</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.6 Un problema di sostenibilità</td>
<td>55</td>
</tr>
<tr>
<td>3 Cooperazione e competizione</td>
<td>3.1 Un semplice modello di produzione e di scambio</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Equilibrio e ottimo sociale</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Il caso del produttore e del parassita</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>3.2 Il dilemma del prigioniero</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Alcuni esempi</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>3.2.2 La dinamica della cooperazione</td>
<td>81</td>
</tr>
</tbody>
</table>
3.2.3 Alcuni esempi di cooperazione 89
3.2.4 La regola d’oro ... 90
3.3 La tragedia dei Commons 91
3.4 Due paradossi rivelatori 95
 3.4.1 Uso di risorse e paradosso di Jevons 95
 3.4.2 Aumentare le possibilità di scelta porta a maggiore
efficienza? Il paradosso di Braess 100

4 Votazioni .. 105
 4.1 Introduzione .. 105
 4.2 Votazioni ed ordinamenti 106
 4.2.1 Il metodo di Condorcet 107
 4.2.2 Il metodo di Borda 110
 4.2.3 Metodo delle eliminazioni successive 112
 4.2.4 Voto per approvazione 117
 4.3 Teoremi di impossibilità 118
 4.4 Il metodo del consenso 120

5 Valutazione di progetti 123
 5.1 Analisi Costi Benefici 123
 5.1.1 Un investimento immobiliare 123
 5.1.2 Estensione al caso di costi sociali 126
 5.1.3 Tempo, tasso di attualizzazione e conflitti intergenera-
zionali ... 128
 5.1.4 Monetizzazione delle grandezze e benefici non tangibili 129
 5.1.5 Trasparsenza 131
 5.1.6 Analisi Costi Efficacia 131
 5.2 Analisi multicriteria 133
 5.2.1 Un problema di scelta 135
 5.2.2 Un approccio alla Condorcet 136
 5.2.3 Il metodo ELECTRE 140

Bibliografia .. 147
Indice analitico ... 151
Introduzione

Il proceso decisionale, cioè il processo attraverso cui, a partire dall’emergere di una situazione che richiede una scelta o una azione, si arriva alla scelta dell’azione da intraprendere e poi alla sua realizzazione, è oggetto di studio in settori notevolmente diversi che vanno dalla sociologia alla teoria della politica, dall’economia alle scienze gestionali.

Lo studio dei processi decisionali, la capacità di analizzarne e scomporne i meccanismi, e di evidenziarne gli attori è essenziale non solo per pervenire a ‘buone’ decisioni politiche, qualunque sia il senso che vogliamo dare al termine ‘buono’, ma anche e soprattutto per un controllo ‘democratico’ delle decisioni prese e del modo con cui vengono realizzate. Spesso è il processo decisionale in se stesso che produce risultati significativi al di là delle decisioni ed azioni alle quali esso porta; questo per la sua caratteristica di essere un processo di apprendimento che in qualche modo cambia gli attori stessi in esso coinvolti.

La scienza che si occupa dello studio dei processi decisionali (si parla anche di teoria delle decisioni) rientra fra quelle che Simon (1981) definisce scienze dell’artificiale per distinguerle dalle tradizionali scienze della natura. Queste ultime sono caratterizzate dal fatto che il loro oggetto è, in un certo senso, esterno all’essere umano che le studia e da esso indipendente. Le scienze dell’artificiale hanno invece per oggetto realtà che sono esse stesse prodotto dell’attività degli esseri umani. Qui viene completamente meno quella distinzione fra l’oggetto dello studio ed il modello mentale che lo rap-

1Per controllo democratico si intende qui la possibilità, per tutti coloro che in un modo o in un altro sono toccati, nella propria vita e nei propri interessi, dalle decisioni prese, di decifrare le motivazioni ed i meccanismi che hanno portato a tali decisioni, e quindi eventualmente di metterle in discussione e, se è il caso, di contrastarle.

2La disciplina che più specificatamente ha per oggetto lo studio dei processi decisionali, ma soprattutto la messa a punto di metodologie per pervenire a scelte ‘razionali’ o, come spesso viene detto in modo improprio, per prendere decisioni ottime, è quella che, a livello internazionale, è nota come Operations Research/Management Science. I due termini, che tendono ormai ad essere considerati come sinonimi, hanno in realtà un senso diverso, il primo accentuando le decisioni e le scelte di tipo più tattico ed operativo, ed il secondo quelle di maggiore impatto strategico e politico.
presenta, lo descrive e lo rende intelligibile, distinzione che, almeno in linea di principio, si dà nel caso delle scienze naturali3.

Un processo decisionale parte in genere quando si manifesta l’esigenza di un cambiamento, di una azione. Ciò può avvenire in diverse circostanze ed attraverso diverse dinamiche: come risposta ad una situazione di disagio o alla sensazione che lo stato corrente delle cose è inadeguato rispetto ai desideri o alle esigenze di una specifica comunità, per l’azione di una persona o di un gruppo di persone interessate al cambiamento, per l’emergere di nuovi dati o risultati di ricerche che evidenzino la necessità di un nuovo corso di azione e di nuove politiche, per la pressione di un’opinione pubblica mobilitata da campagne di stampa, . . .

Questo emergere di una esigenza di cambiamento porta innanzitutto alla formulazione di quello che possiamo chiamare un problema di cui cercare la soluzione. Qualche volta il problema sarà ben definito e formalizzabile in termini di obiettivi e di vincoli esprimibili per mezzo di formule matematiche, ma più spesso sarà espresso in termini molto confusi, per mezzo di obiettivi, o forse solamente aspirazioni, molto generali. A partire da queste aspirazioni/obiettivi iniziali, analizzando il contesto ed i vincoli che esso pone, gli attori (attivi e passivi) coinvolti, le relazioni di potere che li legano, gli interessi in gioco, sarà possibile arrivare ad una definizione più precisa del problema e quindi all’analisi dei possibili ‘corsi di azione’ per la sua soluzione ed infine alla realizzazione della soluzione scelta. Una dimensione rilevante della complessità di un problema è quella temporale. C’è una grande differenza fra problemi di tipo tattico/operativo, che fanno riferimento al breve o medio termine, e problemi di tipo strategico, che fanno piuttosto riferimento al lungo termine. L’organizzazione delle attività in un magazzino per la distribuzione di aiuti alimentari appartiene al primo tipo, mentre la decisione di quale sia il modo migliore per affrontare una emergenza umanitaria appartiene al secondo tipo.

Non si deve credere che il processo decisionale sia un processo lineare come potrebbe forse apparire dalla breve descrizione che ne abbiamo fatta. In effetti, «un ‘modello lineare’ del processo attraverso cui si arriva alle scelte

3In realtà si tratta di una distinzione sfuggente se è vero che non possiamo conoscere se non attraverso modelli mentali (teorie o paradigmi) e che tali modelli sono influenzati da elementi esterni all’oggetto della scienza stessa, quali le tendenze culturali, politiche ed economiche dell’ambiente in cui si svolge l’attività di chi fa ricerca. Per la relazione fra modelli e ricerca scientifica rimandiamo ad esempio a Popper (1995), mentre un efficace ed illuminante esempio di come una particolare temperie culturale e politica possa avere rilevanti effetti sullo sviluppo anche di quella che è considerata come la più oggettiva e neutra fra le scienze, la fisica, ci viene proposta da Forman (2002) nel suo “Fisici a Weimar”.
politiche ed alla loro messa in atto, caratterizzato da una analisi obiettiva delle opzioni e da una separazione fra momento delle scelte e momento della realizzazione, è inadeguato. Invece, le scelte politiche e le loro realizzazioni sono meglio comprese come un ‘caos di scopi e di casualità’ (Sutton, 1999).

A queste problematiche sarà dedicata la parte iniziale del capitolo 1. Faremo vedere come un processo decisionale è una realtà molto complessa che non si può ridurre alla scelta della ‘migliore’ fra le alternative di un insieme in qualche modo predefinito. Si tratta di un processo che, se si vuole davvero arrivare a scelte che rispondano positivamente alle esigenze da cui esso aveva preso le mosse, deve essere caratterizzato da due elementi fondamentali: apprendimento e partecipazione. L’analisi di un problema è un processo di apprendimento in cui la realtà (il sistema) in cui il problema nasce viene compresa sempre meglio e le conoscenze che i diversi attori coinvolti hanno vengono messe in comune; questo fa sì che il problema e le possibili soluzioni alternative vengano definite e ridefinite più volte. Ma è anche un processo di partecipazione che deve vedere coinvolti non solo i decisori, ma anche tutti coloro che dovranno poi operare per mettere in pratica le decisioni prese e coloro che subiranno nella propria vita (in modo positivo o negativo) gli effetti di tali decisioni. Senza tali caratteristiche sarà difficile il successo del processo decisionale, vuoi per la scarsa collaborazione o poca motivazione di coloro che devono realizzare le decisioni, vuoi per la resistenza di coloro che si trovano a subire gli effetti di decisioni in cui non sono stati coinvolti e che non capiscono. Molti dei fallimenti che vengono sperimentati sono proprio dovuti a questo, e il darne la colpa a chi avrebbe dovuto realizzare le decisioni oppure alle miei resistenze di chi era oggetto delle decisioni stesse è solo un modo per nascondere le responsabilità di chi aveva mal impostato sin dall’inizio e mal gestito il processo decisionale.

Un ruolo fondamentale giocano nel processo decisionale i modelli, modelli mentali e modelli formali. È attraverso i nostri modelli mentali che noi interpretiamo il mondo intorno a noi e gli diamo senso. «L’immagine mentale del mondo intorno a noi che noi portiamo nella nostra mente è un modello. Uno non porta una città o un governo nella propria mente. Porta solamente dei concetti e delle relazioni selezionate che usa per rappresentare il sistema reale. Una immagine mentale è un modello. Tutte le nostre decisioni sono prese sulla base di modelli. Tutte le leggi vengono approvate sulla base di modelli. Tutte le azioni operative sono effettuate sulla base di modelli. Il problema non è se usare oppure ignorare i modelli. È piuttosto quale scegliere fra diversi modelli alternativi» (Forrester, 1975). I modelli formali sono degli strumenti per migliorare e potenziare i nostri modelli mentali, ma anche per esplicitarli e comunicarli ad altri. La formalizzazione può essere più o meno spinta, ma un certo grado di formalizzazione è necessario per affrontare
la complessità di molti problemi reali. Di modelli formali, si tratterà nel capitolo 2, dove, per mezzo di alcuni esempi, verrà presentato un particolare paradigma per una modellazione formale e fortemente strutturata, quello della Dinamica dei Sistemi.

Fra i diversi tipi di modelli, un particolare interesse rivestono quelli che Rebecca Sutton (1999) chiama policy narratives (espressione che potremmo tradurre con ‘narrazioni riguardanti politiche’). Una narrazione di questo tipo è una ‘storia’, avente un inizio, uno sviluppo ed una conclusione, in cui viene rappresentato uno specifico corso di eventi che ha acquisito lo stato di ‘senso comune’, di ‘verità condivisa’, all’interno di una comunità, o ambiente culturale, scientifico o politico. In alcuni casi si tratta di storie derivanti da esperienze concrete verificatesi in specifiche circostanze, ma che hanno ormai assunto un significato più generale, applicabile in tutti quei casi in cui si riconosca l’esistenza di circostanze simili. In altri casi si tratta di semplici realtà artificiali costruite allo scopo di evidenziare o dimostrare i danni o i benefici che certi comportamenti o corsi di azione possono comportare. Un tipico esempio è quella che viene chiamata “The tragedy of the commons”\(^4\). Di questo particolare tipo di modelli, o meglio di questo modo di usare i modelli, si tratterà nel capitolo 3, attraverso un insieme di modelli che mirano a confrontare e studiare gli effetti di comportamenti di tipo cooperativo e di tipo competitivo.

In un processo decisionale in cui ci sono più attori o decideri con diversi obiettivi, interessi e preferenze si pone il problema di come arrivare alla scelta di una fra le possibili decisioni alternative. Ciascuno dei decideri ordinerà in modo diverso le alternative sulla base delle sue preferenze: come arrivare ad un ordinamento comune? Un tipico modo per risolvere questo problema è quello di votare; attraverso una votazione si dovrebbe arrivare a scegliere l’alternativa preferita se non da tutti almeno dalla maggioranza dei decideri. Questo almeno è quello che il senso comune ci dice. In realtà le cose sono

\(^4\) Il termine commons indica quelle situazioni in cui una risorsa è disponibile all’uso da parte di un insieme di persone, o di una comunità, senza che ci siano vincoli di proprietà individuale. Questa può essere la situazione di una spiaggia libera, della fonte di un villaggio, di un pascolo in terreni di pertinenza di una comunità, The tragedy of the commons è il titolo di un famoso articolo dell’ecologista Garret Hardin (1968). In questo articolo Hardin sostiene, attraverso un semplice ma efficace modello, che il fatto che ciascuno abbia diritto ad utilizzare la risorsa, senza sentirsi per altro responsabile del suo mantenimento, non avendone la proprietà esclusiva, porterà ad un sovrasfruttamento e quindi in breve tempo ad un esaurimento o impoverimento della risorsa stessa (l’argomento verrà trattato più in dettaglio nel paragrafo 3.3). Si tratta di una tesi fondamentalmente pessimista che ha avuto molto successo ma che è stata anche molto discussa. In effetti se esistono nella realtà molti casi che la confermano, esistono anche molti e significativi esempi contrari (Ostrom, 1990)
molto più complesse, come viene spiegato nel capitolo 4, dove si passano
in rassegna le principali tecniche di voto, analizzandone aspetti positivi e
negativi, e dove viene presentato un classico teorema di impossibilità che fa
vedere come non esista alcun metodo di votazione che sia completamente
soddisfacente.

Un problema diverso anche se con diversi punti di contatto con il prece-
dente e non meno importante all’interno di un processo decisionale è quello
delle metodologie per valutare decisioni alternative, analizzandone gli effetti
ed i risultati nel tempo, in modo da potere scegliere quella preferibile. Come
valutare i costi ed i benefici che un certo corso di azione comporterà? Ma
soprattutto, date più alternative non facilmente comparabili (alcune preferi-
bili da alcuni punti di vista, altre da altri), come fare a sceglierne una? Sono
queste le problematiche oggetto del capitolo 5, in cui vengono presentate e
discusse criticamente la tradizionale tecnica dell’analisi costi-benefici ed al-
cune sue varianti, per poi passare alla descrizione di più sofisticate tecniche
basate sull’analisi multicriteria.

Senza la pretesa di essere esaustivi (molti altri contenuti avrebbero potuto
essere inseriti), e coscienti che molte delle scelte fatte riflettono i gusti e le
preferenze di chi scrive, e sono certamente discutibili e criticabili con buone
ragioni, riteniamo di avere fornito un insieme di strumenti adeguato a mettere
il lettore in grado di comprendere ed affrontare le principali problematiche
che nascono in un processo decisionale.

Ringraziamenti Voglio ringraziare Giancarlo Bigi, Paola Cappanera e
Massimo Pallottino per l’aiuto che mi hanno dato con i loro commenti e
le loro critiche nella stesura di questo volume. Giancarlo mi ha paziente-
mente accompagnato nella fase iniziale di definizione della struttura e dei
contenuti. Paola ne ha letto con grande attenzione una prima versione; i
suoi commenti sono stati preziosi per arrivare alla versione attuale. Le di-
scussioni con Massimo sui processi decisionali, soprattutto con riferimento
alle problematiche dello sviluppo, sono state essenziali per la stesura finale
del primo capitolo.
Introduzione
Capitolo 1
Problem i e approccio sistemico

1.1 Problemi

Il matematico tende a distinguere tra problemi ‘ben posti’ e problemi ‘mal posti’. Un problema ben posto è un problema formulabile in modo rigoroso in cui sono chiari ed univocamente definiti gli obiettivi. Un tale problema ha già la soluzione in un certo senso inclusa nella sua formulazione; l’unica vera difficoltà per il decisore consiste nel trovare i mezzi tecnici appropriati (in generale di tipo matematico-computazionale) per ‘estrarre’ la soluzione dalla formulazione del problema. A volte questi mezzi tecnici, per la grande dimensione del problema o per la complessità della sua struttura, possono non esistere; ci si deve allora accontentare di soluzioni ‘approssimate’. Sono tuttavia proprio questi i problemi che pongono sfide e che stimolano l’avanzamento della ricerca metodologica.

Ad esempio è un problema che appartiene alla classe dei problemi ben posti, almeno in principio, quello di determinare la locazione ed il dimensionamento ottimi di un magazzino da parte di una azienda in un’area di cui sono note le caratteristiche della domanda dei beni prodotti dall’azienda. Un tipico approccio metodologico per la soluzione di un problema di questo tipo si articola attraverso i seguenti passi (non necessariamente nell’ordine):

1. Il problema viene analizzato e formulato per mezzo di un opportuno insieme di variabili e di relazioni matematiche (vincoli) che le legano fra di loro. Si ottiene così un modello matematico dello spazio delle soluzioni del problema. Ad esempio se i luoghi fisici candidati per la costruzione del magazzino sono 2, A e B, indicando con y_A la variabile logica che assume valore 1 se decidiamo di costruire il magazzino in A e 0 altrimenti, e con y_B l’analoga variabile per la locazione B, l’uguai-
Capitolo 1. Problemi e approccio sistemico

glissanza (vincolo) \(y_A + y_B = 1 \) esprime il fatto che il magazzino deve essere costruito e lo sarà in una sola delle due località.

2. Viene identificato un obiettivo che viene formulato per mezzo di una funzione (\textit{funzione obiettivo}) definita nello spazio delle soluzioni, da minimizzare o da massimizzare. Ad esempio, sempre nel caso del magazzino, se si vuole minimizzare il costo di costruzione e \(c_A \) e \(c_B \) sono rispettivamente i costi di costruzione del magazzino in \(A \) ed in \(B \), la funzione obiettivo sarà \(c_A y_A + c_B y_B \). Il caso frequente in cui gli obiettivi sono molteplici e contrastanti viene spesso risolto aggregandoli, ad esempio con una somma pesata delle relative funzioni, in un unica funzione obiettivo.\(^1\)

3. I parametri del modello complessivo risultante vengono determinati utilizzando dati già disponibili oppure raccolti ‘ad hoc’. In genere servono a questo scopo rilevanti quantità di dati. Ad esempio per il calcolo dei parametri \(c_A \) e \(c_B \) visti prima bisogna avere informazioni riguardanti la dimensione dei magazzini (superficie e cubatura), che dipende dalla domanda stimata dei beni prodotti dall’azienda, i costi di costruzione, i costi di trasporto (che possono essere diversi fra le 2 località), . . .

4. L’incertezza insita in molte situazioni reali viene ricondotta a ‘certezza’ attraverso l’uso di valori attesi o medi, oppure attraverso la definizione di un numero limitato di possibili scenari che rappresentino l’evoluzione del sistema in cui nasce il problema in esame; a tali scenari vengono poi attribuite probabilità in modo da rendere deterministico il modello risultante. Ad esempio il dimensionamento del magazzino dipende dalla domanda prevista, dato su cui non c’è alcuna certezza. È però possibile, sulla base dei dati storici, avere informazioni sulla domanda media in ciascun mese.

5. La soluzione viene ottenuta tramite l’utilizzo di algoritmi matematici tanto più potenti e sofisticati quanto più è complesso il problema. La complessità dipende soprattutto dal numero delle variabili e dei vincoli e dalla forma matematica che questi vincoli e la funzione obiettivo assumono.

Un approccio di questo tipo è stato ampiamente usato con risultati spesso

\(^{1}\)In generale questa fase non è chiaramente distinguibile dalla precedente: la definizione, per lo meno a livello ancora non formalizzato, degli obiettivi è essenziale per guidare la formulazione analitica del problema e dell’insieme delle sue soluzioni, ed a sua volta questa formulazione determina la formulazione analitica della funzione obiettivo.
1.1. Problemi

molto positivi. La *Programmazione Matematica*\(^2\) è la disciplina che a partire dalla seconda metà del secolo scorso ha sviluppato tecniche sempre più sofisticate e computazionalmente efficienti per la modellazione e la soluzione di problemi di questo tipo. La sequenza di passi descritta precedentemente costituisce proprio il paradigma tipico per la soluzione di problemi sviluppati nell’ambito di questa disciplina\(^3\).

Approcci alternativi sono quelli sviluppati nell’ambito della *Analisi dei Sistemi*. Molto spesso in approcci di questo tipo il punto di partenza è l’obiettivo che si vuole raggiungere, che si assume noto e ben definito sin dall’inizio. Vengono poi analizzati diversi modi per ottenerlo, rappresentati da diversi percorsi che il sistema oggetto dell’analisi dovrà seguire per passare dallo stato iniziale allo stato finale (quello desiderato). A ciascuno di questi modi corrisponderà un costo o l’uso di una certa quantità di risorse, e naturalmente si cercherà quello più economico. Anche qui è necessario costruire un modello del sistema che evidenzi le interrelazioni tra le sue diverse parti e fra esso e l’ambiente esterno.

Comune agli approcci che abbiamo descritti è l’assunzione che il problema in esame sia abbastanza ben strutturato, cioè che ci sia un sostanziale accordo su quale sia il problema e sulla sua rappresentazione; quello che rimane da decidere è come risolverlo. L’attività dell’analista si limita usualmente a quest’ultimo aspetto, non considerando suo compito mettere in discussione gli obiettivi né le caratteristiche sostanziali del sistema stesso.

Esistono tuttavia ampie classi di problemi difficilmente affrontabili in questo modo, e si tratta spesso dei problemi di maggiore importanza dal punto di vista della società e degli individui che ne fanno parte. Possiamo pensare ai problemi come punti in uno spazio a tre dimensioni come quello in figura 1.1. In questo spazio man mano che ci si allontana dall’origine aumenta il numero degli attori, il numero degli obiettivi e l’incertezza dell’ambiente in cui si colloca il problema. Punti vicini all’origine corrispondono in genere a problemi ben strutturati e semplici (anche se spesso computazionalmente complessi), mentre all’allontanarsi del punto dall’origine aumenta la complessità intrinseca del problema. Spesso i problemi vengono classificati secondo la dicotomia *tattico*/*strategico*. I problemi di tipo tattico fanno riferimento a orizzonti temporali abbastanza vicini, ed in genere sono caratterizzati da un

\(^2\)In realtà la Programmazione Matematica è un settore particolare della più ampia area disciplinare nota con i nomi (spesso intercambiabili) di Ricerca Operativa e Scienza del Management (Operations Research/Management Science, OR/MS). All’interno di tale area, intesa in una accezione ampia, si possono ricondurre anche gli altri approcci presentati successivamente nel presente capitolo.

\(^3\)Per una introduzione alla costruzione di modelli di Programmazione Matematica ed agli algoritmi per la loro soluzione rimandiamo a (Bigi et al., 2003).
numero limitato di attori, obiettivi e, soprattutto, da un limitato livello di incertezza. Al contrario i problemi strategici, che fanno riferimento ad orizzonti temporali più ampi, sono spesso caratterizzati da un maggiore numero di attori ed obiettivi, ed usualmente da un grande livello di incertezza.

![Figura 1.1. Lo spazio dei problemi](image)

Consideriamo ad esempio il problema di decidere se intervenire e come intervenire in un’area in cui sia verificata o si stia verificando una emergenza umanitaria (guerra, carestia, . . .), e, una volta deciso l’intervento (ad esempio la costruzione di un campo di accoglienza), individuare le caratteristiche tecniche dell’intervento e gestirne la logistica. Questo è un problema difficilmente formulabile in termini matematici per mezzo di un modello elegante e den definito, ed è presumibilmente un problema caratterizzato da notevole incertezza e da un rilevante numero sia di attori che di obiettivi. Innanzitutto lo stesso concetto di ‘emergenza umanitaria’ non è definibile in modo univoco e usualmente l’opportunità di un intervento è percepita in modo diverso dai diversi attori coinvolti: gli ‘organismi non governativi’ che, al di là delle motivazioni ideali, trovano negli interventi anche la giustificazione e l’accrescimento del proprio ruolo, i poteri locali che possono vedere nell’intervento un’ingerenza esterna oppure un’occasione per rafforzare la propria posizione, i profughi per cui l’intervento può rappresentare l’unica speranza di sopravvivenza, la popolazione residente che può trarne benefici ma anche esserne danneggiata. E poi c’è il ruolo dei media spesso distorce o per l’eccessiva copertura di un evento con la conseguente creazione di un clima, non sempre giustificato, di urgenza, o per la poca copertura se l’evento non
1.1. Problemi

si ritiene faccia notizia. Non meno problematica è poi la decisione di determinarne gli aspetti tecnici (ad esempio il luogo dove costruire un campo per lo smistamento degli aiuti), una volta deciso di effettuare l’intervento, sia per la difficoltà di definire in modo univoco gli obiettivi sia per la frequente esistenza di conflitti di diverso tipo.

Questo problema è un tipico esempio di problema difficilmente riconducibile ad una formulazione matematica chiara ed univoca che lo collochi all’interno del mondo dei problemi ben posti. O se lo è, lo è a prezzo di semplificazioni che fanno perdere di vista la realtà e che rischiano di portare a soluzioni fallimentari. È il tipico problema difficilmente affrontabile con l’approccio metodologico visto prima.

Un tale approccio infatti ha rilevanti limiti tecnici e presuppone delle ipotesi spesso discutibili. Imanzitututto perché il modello costruito rappresenta in modo adeguato agli obiettivi la realtà sotto esame si richiede la disponibilità di una ingente mole di dati. Nel caso sopra riportato è presumibile che si disponga di esperienze relative a casi precedenti simili, ma è molto improbabile che si disponga di una significativa quantità di dati sulla specifica situazione in esame. Un approccio basato sull’ottimizzazione e su funzioni obiettivo chiaramente definite presuppone l’esistenza di un decisore unico, capace, attraverso una precisa catena di comando, di fare realizzare le decisioni prese. Le persone coinvolte vengono trattate come elementi passivi del sistema e non come attori. Non è raro il caso di decisioni politiche astrattamente corrette che poi falliscono nella fase della realizzazione per la mancanza di collaborazione o la resistenza di coloro che dovrebbero metterle in pratica. Inoltre l’incertezza, intrinseca in questo come in molti problemi reali, viene nei fatti eliminata, con risultati spesso molto diversi da quelli voluti. Infine un approccio come quello descritto, basato su una logica sostanzialmente di tipo ‘lineare’, non riesce a cogliere le complesse interazioni fra le diverse componenti del sistema in esame, interazioni che possono far sì che una azione intrapresa, attraverso una complessa catena di relazioni causa-effetto possa alla fine produrre risultati opposti a quelli desiderati o previsti⁴. Usando le parole di Ackoff, in genere, il «decisore non si trova di fronte problemi che sono l’uno indipendente dall’altro, ma ha di fronte situazioni dinamiche che consistono di complessi sistemi di problemi in evoluzione, interagenti l’uno

⁴Un tipico caso, ormai ampiamente studiato, è quello degli effetti negativi che possono avere gli aiuti alimentari, pur necessari in certe situazioni di emergenza: l’immissione di derrate alimentari in grandi quantità e a prezzo basso o nullo ha effetti deprezianti sull’attività dei piccoli produttori locali con il rischio di una loro possibile uscita dal mercato. Il risultato è che un sollievo delle condizioni alimentari nel breve periodo produce un loro aggravamento nel medio e lungo periodo. In certi casi poi il flusso di aiuti finisce per alimentare il mercato nero e la criminalità.
con l’altro» (Ackoff, 1979).

1.2 Un approccio olistico alle decisioni

Descriviamo in questo paragrafo un approccio al processo decisionale che abbiamo chiamato olistico perché si basa su una visione complessiva ed integrata della realtà. La realtà viene vista come un sistema, cioè un insieme di parti (componenti) fra di loro interagenti in modo tale che il tutto, cioè il sistema stesso, sia qualcosa di più che la somma o giustapposizione delle parti. Il sistema ha proprietà che non sono direttamente derivabili dalle proprietà delle sue parti prese singolarmente.

1.2.1 Sistemi e processi decisionali

Ci sono diversi tipi di sistemi. In una prima classificazione possiamo pensare a sistemi naturali e sistemi artificiali. Fra i primi si collocano ad esempio sistemi inanimati, come il sistema solare, oppure sistemi viventi, come un organismo (ad esempio una pianta) con le sue diverse funzioni o una colonia di formiche. Un sistema artificiale è invece un sistema progettato e costruito dall’uomo: un tipico esempio può essere il motore di una automobile, oppure una rete di comunicazioni (ad esempio internet). Esistono però altri sistemi che in un certo senso hanno caratteristiche un po’ di entrambi i tipi di sistemi descritti, ma che hanno anche qualcosa in più e non riconducibile ad essi: si tratta dei sistemi di attività umane, cioè di sistemi di attività collegate tra loro da uno struttura logica che permette di dare ad esse degli scopi comuni. La struttura di questi sistemi è almeno in parte il prodotto di un progetto; ad esempio la struttura organizzativa di una azienda è il frutto della implementazione di un’idea di come l’azienda debba funzionare, e quindi di un progetto. La presenza dell’uomo vi inserisce tuttavia dinamiche che vanno al di là di quanto previsto nel progetto originario: si tratta di dinamiche che trovano la loro radice nella cultura e nei valori della società in cui il sistema si colloca e nella stessa natura umana, e che accomunano in un certo senso questi sistemi ai sistemi naturali. Ma c’è qualcosa in più, e questo qualcosa è la libertà sempre presente, almeno come possibilità, nei comportamenti.
1.2. Un approccio olistico alle decisioni

umani, libertà che inserisce nei comportamenti di questi sistemi un elemento di imprevedibilità che va al di là della semplice incertezza di tipo statistico affrontabile con gli strumenti del calcolo delle probabilità.

Naturalmente quando si parla di scopi bisogna sempre avere chiaro che questi scopi, nella loro definizione o descrizione, si portano sempre dietro il nostro sistema di valori, la nostra “visione del mondo”. Ad esempio se consideriamo il sistema carcere come un sistema di attività umane aventi uno scopo comune, e chiediamo a qualcuno di descriverci questo scopo, possiamo sentire risposte del tipo: un “sistema di riabilitazione”, un “sistema di punizione”, un “sistema di protezione della società”, … È chiaro che dietro queste diverse risposte ci sono diversi valori, diverse idee politiche, diverse antropologie, cioè concezioni dell’essere umano.

Un processo decisionale complesso può essere visto come un processo di apprendimento e di gestione. L’apprendimento riguarda la problematica e complessa situazione in cui si opera, e la gestione riguarda le azioni organizzate che vengono assunte per modificare tale situazione. Qualsiasi attività umana, sia essa la produzione di un qualche bene in una azienda, la realizzazione di un progetto da parte di una Ong, oppure la gestione di un sistema ambientale, comporta sia un processo di apprendimento che un’attività di gestione. L’apprendimento è sempre un processo a due vie: da un lato i nostri modelli mentali e dall’altro la realtà in una continua interazione attraverso un processo di confronto e di verifica continu.

Inoltre l’apprendimento ha anche una caratteristica partecipatoria: procede attraverso il coinvolgimento di diversi attori. Un processo decisionale dovrebbe avere come effetto il coinvolgimento di tutti gli attori interessati, nella convinzione che ciò che è rilevante non sono solo le specifiche azioni che alla fine verranno intraprese, ma anche il processo (come metodo e come conoscenza) che porta a quelle azioni5.

Proprio per quanto abbiamo detto un processo decisionale non può essere

5『[Nel] progetto di sistemi complessi quali città, edifici o economie, dobbiamo abbandonare l’idea di potere creare sistemi che ottimizzino alcune ipotizzate funzioni di utilità, e dobbiamo piuttosto chiederci se differenze in stile […] non rappresentino delle varianti altamente desiderabili nel processo del progetto piuttosto che alternative da essere valutate come ‘migliori’ o ‘peggiori’. La varietà […] può essere un fine desiderabile in se stesso perché, fra le altre ragioni, ci permette di attribuire valore alla ricerca tanto quanto all’esito - di considerare il processo progettuale stesso come una attività di valore per coloro che vi partecipano. Noi abbiamo usualmente considerato la pianificazione urbana come un mezzo attraverso cui l’attività creativa del pianificatore può arrivare a costruire un sistema che soddisfi le esigenze della popolazione. Forse dovremmo pensare alla pianificazione urbana come ad una valida attività creativa in cui molti membri di una comunità possono avere l’opportunità di partecipare』. (Simon, 1981)
Capitolo 1. Problemi e approccio sistemico

un processo lineare in cui prima si decide e progetta il cambiamento e poi lo si attua. Si tratta piuttosto di un processo in continuo progresso ed evoluzione, che richiede capacità di costruire consenso, partecipazione di tutti i ‘portatori di interesse’, disponibilità ad accogliere suggerimenti e modifiche, soluzione di conflitti e coinvolgimento e mobilitazione di coloro che dovranno mettere in pratica le decisioni prese. Senza che questi ultimi siano stati coinvolti e motivati è difficile che una decisione/progetto possa arrivare con successo alla fase dell’attuazione.

Concludendo possiamo affermare che un progetto ha sempre due tipi di risultati; da un lato c’è il risultato esplicitato nella definizione degli obiettivi del progetto (ad esempio un acquedotto per un villaggio, la costituzione di una cooperativa agricola, ...), dall’altro c’è l’esperienza, le conoscenze e le competenze che si sono create nel corso del progetto. Queste ultime costituiscono spesso l’effetto positivo più duraturo del progetto.

1.2.2 I passi del processo decisionale

Descriviamo ora i passi principali di un approccio olistico per affrontare una situazione problematica (per la soluzione di un problema). In questa descrizione ci rifacciamo principalmente all’approccio di Checkland (1989).

1. Analisi del contesto

Il primo passo consiste nell’individuare le caratteristiche fondamentali della situazione in cui nasce il problema. In particolare vanno individuati tutti gli attori interessati, quelli da cui ha origine l’intervento, quelli che potrebbero (aiutare a) risolvere il problema, e quelli che hanno comunque un qualche interesse nella situazione o che possono essere toccati dalle decisioni che verranno prese.

Il sistema va considerato come un sistema sociale, cioè vanno presi in considerazione i ruoli dei diversi attori, i loro valori, la loro cultura. Infine bisogna analizzare la situazione anche da un punto di vista politico, cioè quale è la struttura di potere ed attraverso quali beni o risorse si ottiene, si conserva e si trasmette il potere.

È un errore cercare di definire in modo rigido il problema a questo livello: la definizione del problema procede con il processo di apprendimento.

2. Individuazione delle componenti del sistema

Nel secondo passo si individuano le diverse componenti del sistema, gli attori coinvolti nei diversi ruoli (sulla base dell’analisi della fase prece-
1.2. Un approccio olistico alle decisioni

dente), i vincoli ambientali, le variabili ed i processi di trasformazione
coinvolti.

3. Individuazione dei sottosistemi

Si cominciano ad individuare i sottosistemi di interesse, corrispondenti
da diverse attività e/o funzioni del sistema in esame. Un sistema non
è qualcosa che esiste in natura, per cui il nostro compito possa essere
considerato solamente quello di svelarlo mettendolo in evidenza. Un
sistema è sempre il prodotto di un nostro modo di vedere, descrive-
re ed interpretare la realtà. Perciò possiamo aspettarci che ci sia una
molteplicità di diversi sottosistemi, ciascuno dei quali rappresenta un
nostro modo di vedere le funzioni del sistema in esame, le possibili att-
ività che in esso possono essere svolte (o che noi riteniamo auspicabile
o probabile che lo siano), le possibili domande che sul sistema noi ci
possiamo porre.

4. Costruzione dei modelli

Si costruiscono modelli concettuali del sistema, evidenziando le rela-
zioni funzionali fra le varie componenti. In questa fase vengono anche
definiti i criteri e le procedure per la valutazione ed il monitoraggio del
sistema nel suo funzionamento dal punto di vista della correttezza (il
fatto che il sistema si comporti coerentemente con i suoi scopi), della
efficacia (se i mezzi che vengono utilizzati siano adatti al raggiungi-
mento degli scopi) e della efficienza (rapporto tra obiettivi raggiunti e
risorse utilizzate).

5. Simulazione del sistema

Si cerca di confrontare i modelli con la realtà. Da un lato si mettono
a confronto i modelli con le percezioni che della realtà da esso rappre-
sentata hanno le persone che in un modo o nell’altro vi sono coinvolti.
Dall’altro si cerca di simulare il funzionamento dei modelli seguen-
do passo passo le loro attività o manualmente sulla carta, oppure su
un calcolatore, per mezzo di opportuni software. I risultati di questa
simulazione possono essere eventualmente confrontati con dati storici
oppure semplicemente con passate esperienze.

Le differenze fra modelli e realtà analizzate possono suggerire l’oppor-
tunità di una revisione dei modelli stessi, il che comporta il ritorno ad
uno dei passi precedenti. Altrimenti si passa alla fase propositiva.

6. Individuazione delle decisioni da prendere
Capitolo 1. Problemi e approccio sistemico

In questa fase si sviluppa una discussione sui possibili cambiamenti per migliorare la realtà in esame. È importante che si arrivi a questa fase proprio per la natura di processo di apprendimento che ha il processo di modellazione. I cambiamenti discusso dovranno essere sia sistematicamente desiderabili sia culturalmente realizzabili. Da un lato infatti si vuole che i cambiamenti previsti spostino il sistema nella direzione voluta, dal punto di vista dei meccanismi di funzionamento, degli scopi da raggiungere e dell’uso delle risorse; dall’altro questi cambiamenti devono tenere conto della situazione umana (cultura, miti, aspettative e valori) in cui si collocano.

7. Attuazione e monitoraggio

Una volta che siano stati individuati cambiamenti che siano ad un tempo desiderabili e realizzabili, essi vanno attuati. La stessa fase di attuazione comporterà delle verifiche ed eventualmente può portare a nuovi cicli attraverso le fasi del processo appena descritto.

La suddivisione in fasi che abbiamo data va intesa come indicativa. Si tratta di una guida e non di una ricetta da applicare alla lettera. A seconda dei problemi esaminati alcune delle fasi possono perdere di senso, oppure può essere conveniente accorpare più fasi in una sola. Infine il processo decisionale è per sua natura iterativo e procede per raffinamenti successivi, per cui su alcune delle fase si può essere costretti a ripassare più volte.

1.2.3 Un esempio

Il problema che useremo per l’esemplificazione del processo decisionale descritto nel precedente paragrafo è derivato da un problema reale che riguarda uno stato africano subsahariano, che chiameremo col nome fittizio di Zimlia, nome preso a prestito dal bel romanzo della scrittrice Doris Lessing. Trattandosi semplicemente di un esempio didattico abbiamo da un lato semplificato considerevolmente il problema e dall’altro inserito degli elementi non presenti nel problema originale.

La Zimlia è un paese caratterizzato da un elevatissimo livello di povertà: il 64% della popolazione è al di sotto del livello di povertà e di questa oltre la metà è in condizioni di estrema povertà. La popolazione povera vive per l’88% nelle campagne, e la povertà riguarda percentualmente più le donne che gli uomini. Infine la povertà non è sempre spiegata con l’assenza delle

6 I dati del problema sono stati ricavati dalla descrizione di un progetto di cooperazione fornitoci gentilmente dalla società Timesis.

7 Il sogno più dolce, Feltrinelli, 2002.
infrastrutture socio-sanitarie essenziali; in effetti spesso queste infrastrutture esistono ma funzionano molto male.

Il Ladik\(^8\), con una popolazione di circa 85.000 abitanti, ed un tasso di povertà che raggiunge il 92\%, è una delle regioni più povere della Zimlia. Il problema che il governo della Zimlia si pone è come intervenire per migliorare le condizioni di vita della regione, anche allo scopo di disporre di progetti da presentare alla cooperazione internazionale.

Descriviamo di seguito, utilizzando lo schema del precedente paragrafo, le fasi attraverso cui il problema può essere analizzato, ricordando l’avvertenza che la suddivisione in fasi non va intesa in senso molto rigido e che comunque è caratterizzata da un certo grado di arbitrarietà.

1. **Analisi del contesto.**

Innanzitutto vediamo quali sono gli attori interessati:

- Il Governo Provinciale e l’Assemblea Regionale del Ladik, i prefetti e le autorità comunali; si tratta di attori importanti, da cui dipenderà la realizzazione delle decisioni che verranno prese.
- Le popolazioni locali, in gran parte rurali.
- Le istituzioni tradizionali di tipo tribale che rappresentano le popolazioni locali, e che consentono la soluzione delle controversie e la gestione delle risorse comuni.
- Le agenzie internazionali e/o i governi nazionali e locali capaci di finanziare gli interventi eventualmente decisi.

Gli studi esistenti individuano tre forme principali di povertà: (i) povertà nelle condizioni di vita, cioè carenze nei settori dell’alimentazione, della sanità, dell’istruzione, dell’impiego e dell’alloggio; (ii) povertà di reddito, che si traduce in careenza di risorse e quindi in consumi insufficienti; (iii) povertà di opportunità, dovuta a carenze di capitale che hanno ricadute sull’accesso alla terra, all’acqua, ai mezzi di produzione ed al credito.

\(^8\)Anche questo è un nome fittizio.
Capitolo 1. Problemi e approccio sistemico

Il livello della povertà è legato a fattori quali l’ambiente di residenza (rurale o urbano), il settore di attività (primario, secondario o terziario), l’età ed il genere. In effetti, la popolazione povera vive, in una misura vicina al 90% in ambiente rurale ed è impiegata nel settore primario; inoltre dal punto di vista della povertà le donne sono le più svantaggiate.

Un intervento dovrà tenere conto che la popolazione povera è prevalentemente rurale e dovrà contribuire a rafforzare il processo di decentramento amministrativo che viene perseguito dal governo centrale.

2. Individuazione delle componenti del sistema

Una analisi delle componenti del sistema porta ad individuare l’esistenza di infrastrutture di base (centri sanitari, scuole, strade), ma anche la loro inadeguatezza rispetto alle esigenze della popolazione. Inadeguata è anche la rete idrica, con limitato accesso all’acqua potabile per la popolazione.

Dal punto di vista dell’economia le attività principali si collocano nei settori dell’agricoltura (principalmente riso) e dell’allevamento.

Dal punto di vista ambientale, il clima è caratterizzato da frequenti periodi di siccità ed è in corso un processo di desertificazione.

La regione ha comunque delle interessanti potenzialità: buona qualità dei pascoli, risorse naturali (miniere, sole, vento e acque sotterranee) e turistiche, anche se poco sfruttate. È poi presente un artigianato tradizionale ricco e vario.

3. Individuazione dei sottosistemi

Possiamo pensare a diversi sottosistemi, eventualmente con sovrapposizioni fra di loro. Ci sono ad esempio il sottosistema della popolazione, con la sua dinamica, il sottosistema politico amministrativo, il sottosistema economico, caratterizzato da agricoltura e allevamento, il sottosistema educativo-sanitario (scuola, educazione sanitaria ed assistenza medica), ed il sottosistema ambientale che include le risorse naturali ed il sistema idrologico.

Questi sottosistemi sono articolati al loro interno e caratterizzati da forti interazioni. Ad esempio le carenze del sistema educativo ed in particolare la limitata frequenza scolastica sono una delle cause del limitato rendimento della agricoltura e dell’allevamento. Dall’altro lato un processo in corso di cambiamento dei sistemi produttivi porta alla
diffusione di tecniche inappropriate che contribuiscono alla desertificazione. All’interno del sottosistema economico esiste una tensione fra agricoltura ed allevamento: gli agricoltori tendono ad espandersi sottraendo terra agli allevatori, e su questi ultimi viene esercitata una pressione perché passino ad un allevamento di tipo stanziale. Questo è dovuto anche alle spinte verso l’intensificazione dei sistemi produttivi⁹.

4. Costruzione dei modelli

A partire da una analisi delle relazioni che legano le diverse componenti del sistema, sia all’interno dei sottosistemi che fra i diversi sottosistemi, viene costruito un modello complessivo del sistema, cosa che può essere fatta a diversi livelli di formalizzazione. Il modello viene costruito coinvolgendo gli attori interessati ed a partire dalla loro conoscenza di come il sistema funzioni. In considerazione della complessità del sistema, del grande numero di elementi coinvolti e della limitatezza dei dati disponibili, si opta per la costruzione di un modello qualitativo. Senza descriverlo tutto, ci limiteremo qui a riportarne una porzione che ci sembra particolarmente significativa al fine di individuare possibili punti su cui agire.

Questa porzione del modello, rappresentata in figura 1.2, descrive le relazioni che legano il sistema scolastico, l’agricoltura, la disponibilità di acqua, l’accesso al mercato e l’erosione dei terreni.

È frequente il caso, e la situazione in esame non fa eccezione, che condizioni di forte povertà spingano a non mandare i bimbi e, soprattutto, le bimbe a scuola; questo mantiene nel lungo termine - o accentua - il basso livello di scolarità, ed in generale le limitate capacità della popolazione, il che si riflette in una agricoltura poco produttiva. Il risultato è un ciclo vizioso che perpetua la situazione di povertà¹⁰. Un possibile intervento, in questi casi, consiste, oltre che nel migliorare il servizio scolastico e la preparazione e motivazione degli insegnanti, nel provvedere incentivi ai genitori perché mandino i figli a scuola. Questa parte del modello la troviamo a sinistra nella figura, dove le frecce indicano la direzione della relazione. Ad esempio la freccia fra “reddito pro capite” e “frequenza scolastica” indica il fatto che il reddito ha una

⁹ In casi del genere ci sono spesso, anche se non espressi esplicitamente, obiettivi politici da parte delle autorità. Infatti le popolazioni stanziali sono più controllabili delle popolazioni nomadi o semi-nomadi che, nella maggior parte dei casi, abitano zone di confine. Un fatto non raro e di importanza non trascurabile è che non solo i diversi attori hanno diversi obiettivi, ma a volte questi obiettivi sono nascosti o comunque non espliciti.

¹⁰ Per una analisi più dettagliata di questo ciclo rimandiamo ad un articolo dal titolo “Food for thought”, pubblicato sull’Economist del 29 giugno 2004.
influenza sulla frequenza; il segno + indicato sulla freccia indica che all’aumentare del reddito aumenta la frequenza, e corrispondentemente, al diminuire del reddito diminuisce la frequenza. La freccia positiva fra “scolarità e formazione” e “livello e qualità della produzione agricola” indica che all’aumentare della scolarità si ha un miglioramento della produzione agricola. Qui per semplicità abbiamo messo insieme l’educazione scolastica di base e la formazione di tipo più professionale, quale la formazione dei contadini ad una agricoltura sostenibile ed integrata.

Altre interessanti relazioni sono rappresentate nella parte destra della figura. La disponibilità di acqua migliora il livello della agricoltura. Date le caratteristiche della regione in esame, l’agricoltura sarà principalmente di tipo familiare ed integrata: una parte per l’alimentazione familiare, una parte da vendere sul mercato per ricavare reddito, e collegata ad essa anche allevamento sia di piccoli animali che di animali più grandi (come vacche da latte). Una agricoltura di questo tipo, che sia attenta alla sostenibilità, può ridurre l’erosione dei suoli. L’accesso al mercato, riducendo la porzione di guadagno che va all’intermediazione, porta ad un aumento del reddito dell’agricoltore e di conseguenza ad un miglioramento della qualità della produzione stessa. Inoltre sotto
1.2. *Un approccio olistico alle decisioni*

Questa voce possono essere indicate azioni di orientamento su cosa produrre, in modo che gli agricoltori possano utilizzare in modo efficiente le proprie risorse.

5. **Simulazione del sistema**

In questo caso più che una vera e propria simulazione dei modelli messi a punto, cosa più adatta a modelli quantitativi, si procede ad una verifica del modello, analizzandone le diverse componenti con le relazioni che le legano, e, soprattutto, le catene ed i cicli causa-effetto, in modo da prevedere i risultati di possibili azioni. Questo va fatto di nuovo coinvolgendo i diversi attori. Con loro va analizzato il modello e verificate le relazioni causa-effetto. Questa fase può, come è già stato detto, portare a ritornare ad una delle fasi precedenti in un processo di tipo iterativo. Assumiamo per semplicità che nel nostro esempio questo non sia risultato necessario.

6. **Individuazione delle decisioni da prendere**

Il lavoro fatto nella precedente fase porta ad individuare possibili punti in cui intervenire nel sistema, ed a delineare gli obiettivi specifici, in termini anche quantitativi, che si dovranno raggiungere per muoversi nella direzione della realizzazione degli obiettivi di massima da cui si era partiti. Ricordiamo che in questo esempio si era partiti dall’esigenza di migliorare le condizioni di vita della popolazione più svantaggiata di una delle regioni più povere del paese. La porzione di modello esaminato precedentemente suggerisce un obiettivo importante, quello da un lato di sviluppare una agricoltura sostenibile, di tipo integrato, e dall’altro di aiutare gli allevatori, creando condizioni che migliorino la loro redditività e garantiscano loro di potere superare agevolmente i periodi di siccità. A questo scopo punti rilevanti del sistema su cui agire appaiono il sistema scolastico e formativo, la disponibilità di acqua e l’accesso ai mercati.
Capitolo 1. Problemi e approccio sistemico

Per il primo ci si può muovere investendo in incentivi alle famiglie perché mandino i figli e le figlie a scuola (pasti a scuola e/o derrate alimentari alle famiglie), e in attività orientate agli adulti di formazione a tecniche agricole sostenibili ed appropriate.

Per il secondo punto, si è ritenuto opportuno pensare ad una struttura stabile per la gestione e l’approvvigionamento delle risorse idriche, dotata di personale opportunamente formato, ed a interventi per la commercializzazione dei prodotti agricoli e di quelli della filiera bestiame. Tutto questo dovrà essere fatto rispettando le istituzioni tradizionali che si sono date nel tempo le popolazioni rurali del luogo, e collaborando strettamente con esse.

7. Attuazione e monitoraggio

Nell’esempio, l’obiettivo più che una immediata attuazione delle decisioni prese, cosa per la quale mancava i soldi, era la presentazione di progetti a possibili istituzioni o enti finanziatori. Quindi il processo termina qui.

1.3 La dimensione dinamica nell’analisi dei sistemi

Nell’analisi di un problema e nello studio del sistema in cui il problema si manifesta è essenziale non trascurare la dimensione dinamica. Una situazione problematica non è definita solamente dallo stato di un sistema (valori delle variabili, relazioni tra le componenti del sistema, …) in un certo momento. Essa è piuttosto definita dall’andamento e dall’evoluzione nel tempo del sistema e delle variabili che lo caratterizzano.

Ad esempio il fatto che nel 1992 il PIL pro capite del Bangladesh fosse di 748 dollari e quello degli Usa di 21.558 ci fornisce un’idea delle diseguaglianze esistenti a livello globale. Ma questa informazione di per se stessa non ci dice molto. Non ci dice ad esempio se si tratta di una disuguaglianza che tende a diminuire o a crescere, oppure se il caso del Bangladesh si possa considerare un caso isolato oppure si tratti di un esempio rappresentativo di una situazione più ampia. Il livello di informazione aumenta se ci viene detto che nel 1900 i due dati erano rispettivamente 581 e 4.086, ma si arricchisce molto se ci viene fornito il grafico di figura 1.3 (i dati e la figura sono presi dallo Human Development Report 1999 dell’Undp).

Da questo grafico appare immediatamente come la dinamica nel tempo delle diseguaglianze a livello planetario risulti crescente in modo esponen-
1.3. La dimensione dinamica nell’analisi dei sistemi

Figura 1.3. Andamento del PIL pro capite a livello globale
Capitolo 1. Problemi e approccio sistemico

11. È proprio l’analisi dell’andamento temporale del fenomeno che fa apprezzare la gravità del problema.

Da quanto detto emerge chiaramente l’importanza di studiare non solo la condizione in cui si trova un sistema in un dato istante temporale, ma anche quale è l’evoluzione del sistema nel tempo e quali sono i meccanismi che producono questa evoluzione. In questo studio due concetti risultano particolarmente utili. Il primo è il concetto di ciclo causale o, usando una terminologia prestito dall’ingegneria dei controlli, di anello di retroazione (feedback loop). L’analisi dei cicli causali è fondamentale per la comprensione delle caratteristiche intrinseche di un sistema e quindi per una corretta previsione della sua evoluzione nel tempo. Il secondo è la distinzione delle variabili che definiscono un sistema, cioè le grandezze attraverso cui rappresentiamo le caratteristiche di un sistema e la sua evoluzione, in variabili di stato, cioè variabili che definiscono le condizioni in cui si trova il sistema, e variabili di attività, cioè quelle variabili che corrispondono alle azioni che modificano nel tempo lo stato del sistema.

1.3.1 Cicli causali

Uno dei primi ad introdurre in modo esplicito il concetto di ciclo causale è stato nell’ambito dell’analisi economica John Stuart Mill nel 1848 (citato da Richardson (1991)):

«Quando si diffonde l’impressione che il prezzo di qualche bene tenda a salire, per un eccesso di domanda, per una caduta di produzione, per ostacoli all’importazione, o per qualsiasi altra causa, allora si crea la tendenza fra i commercianti ad accrescere le riserve di magazzino in modo da potere approfittare della prevista crescita dei prezzi. Questo comportamento tende esso stesso a produrre gli effetti dalla cui attesa era motivato, cioè una crescita dei prezzi: e se la crescita è considerevole e progressiva, altri speculatori sono attratti, i quali, fino a che non si verifichi un

11Il termine esponenziale viene spesso usato nel linguaggio corrente per indicare qualcosa che cresce o varia in modo molto rapido, spesso senza una effettiva comprensione di cosa sia una funzione esponenziale. Senza entrare in dettagli matematici, possiamo dire che una funzione esponenziale f(t), dove con t abbiamo indicato il tempo, è caratterizzata dal fatto che esiste un intervallo temporale Δt tale che ogni Δt unità di tempo essa raddoppia il suo valore, cioè f(t + Δt) = 2f(t) e f(t + 2Δt) = 4f(t). La velocità di crescita della funzione sarà tanto maggiore quanto più piccolo è Δt. È abbastanza facile rendersi conto che, qualunque sia tale valore, non esiste nessun fenomeno fisico o nessuna grandezza che abbia un significato concreto, che possa crescere in modo stabile secondo una legge esponenziale per molto tempo.
La dimensione dinamica nell’analisi dei sistemi

1.3. La dimensione dinamica nell’analisi dei sistemi

inizio di decrescita dei prezzi, sono portati a credere che continueranno a crescere. Essi, con ulteriori acquisti, producono una ulteriore crescita: e così la crescita dei prezzi, per la quale c’era originalmente una qualche causa razionale, è spesso alimentata da acquisti puramente speculative, fino a che essa supera di molto il livello che le motivazioni originali avrebbero giustificato. Dopo un certo tempo questo fatto comincia ad essere percepito; il prezzo cessa di crescere, e gli speculatori, valutando che è giunto il tempo di realizzare i loro guadagni, diventano desiderosi di vendere. Allora il prezzo comincia a scendere: gli speculatori mettono sul mercato le quantità del bene che posseggono per evitare una più grande perdita, e, poiché pochi sono desiderosi di acquistare in una situazione di mercato in declino, il prezzo decresce molto più velocemente di quanto non fosse prima salito.»

Abbiamo qui chiaramente delineato un ciclo di relazioni di tipo causa-effetto (quello più interno nella figura 1.4). Il desiderio di un livello più alto delle scorte di magazzino, motivato da una aspettativa di crescita della domanda, porta a nuovi acquisti e di conseguenza ad un aumento dei prezzi; questo poi porta ad ulteriori aspettative di crescita dei prezzi e quindi al desiderio di aumentare ulteriormente il livello delle scorte. Anche qui, come in figura 1.2, gli archi orientati indicano la direzione delle relazioni causali ed il segno ‘+’ in corrispondenza della freccia indica che si tratta di relazioni di tipo positivo, cioè in cui ad una variazione (in crescita o diminuzione) nella causa corrisponde una variazione dello stesso segno nell’effetto. Chiaramente, in assenza di altri elementi nel sistema, un ciclo in cui tutti gli archi siano positivi produce, una volta che sia stato innescato da un evento esterno (in questo caso l’aspettativa sulla domanda), una esaltazione, che si autoalimenta, degli effetti di tale evento. Si avrebbe quindi in questo caso una crescita illimitata dei prezzi. Naturalmente nella realtà non possono darsi crescite illimitate: in questo caso il confronto fra prezzi che si riscontrano sul mercato ed il valore che è considerato come ragionevolmente giustificato dalla causa che ha inizialmente innescato il processo di crescita porta ad una crescente percezione che è in corso un processo speculativo, e di conseguenza ad un suo raffreddamento. Tutto ciò è il prodotto del ciclo causale più esterno. In questo ciclo c’è un arco con segno negativo che indica che ad una variazione nelle cause corrisponde una variazione di segno opposto negli effetti.

Circa un secolo dopo Mill, ritroviamo il concetto di ciclo causale nell’analisi che Gunnar Myrdal fa della condizione dei neri in America (An American Dilemma, 1944 - citato da Richardson (1991)). Myrdal parla esplicitamente...
Capitolo 1. Problemi e approccio sistemico

Figura 1.4. Il ciclo della speculazione

di “principle of circular and cumulative causation” o più semplicemente di “principle of cumulation”.

Nella sua analisi Myrdal individua una interconnessione fra pregiudizio da parte dei bianchi verso i neri, con i conseguenti processi di discriminazione, da un lato, e basso livello di vita, di salute, di educazione e di comportamenti sociali da parte dei neri, dall’altro. Sono i pregiudizi e la discriminazione a mantenere basso il livello di vita dei neri, e il basso livello di educazione ed i comportamenti sociali che ne conseguono portano ad un aumento dei pregiudizi ed a una intensificazione della discriminazione.¹²

Successivamente nel 1957 Myrdal utilizzerà lo stesso concetto nell’analisi del divario persistente fra nazioni ricche e nazioni povere.

¹²“White prejudice and discrimination keep the Negro low in standards of living, health, education, manners and morals. This, in turn, gives support to white prejudice. White prejudice and Negro standards thus mutually “cause” each other. If, for example, we assume that for some reason white prejudice could be decreased and discrimination mitigated, this is likely to cause a rise in Negro standards, which may decrease white prejudice still a little more, which would again allow Negro standards to rise, and so on through mutual interaction. If, instead, discrimination should become intensified, we should see the vicious circle spiralling downward. The effect would, in a similar manner, run back and forth in the interlocking system of interdependent causation. In any case, the initial change would be supported by consecutive waves of back effects from the reaction of the other factor.”
Negli anni in cui Myrdal sviluppava il principio di accumulazione, un matematico pacifista, Luis Fry Richardson, analizzava attraverso modelli matematici la corsa agli armamenti che si era innescata dopo la prima guerra mondiale e che avrebbe portato alla tragedia della seconda. Nel 1935 Richardson aveva presentato «in una forma semplificata il suo modello per le corse alle armi in una lettera alla rivista Nature. Era preoccupato perché le equazioni mostravano che il disarmo unilaterale della Germania imposto dopo il 1918 dalle potenze alleate, combinato con il persistente livello degli armamenti dei paesi vincitori, avrebbe portato di nuovo alla crescita del livello degli armamenti tedeschi. Dal modello deduceva che occorreva un grande sforzo dell’establishment politico per imporre cambiamenti tesi a prevenire lo sviluppo di una situazione instabile» (D’Angelo, 2002).

Le equazioni di Richardson descrivono un ciclo causale in cui le spese per gli armamenti di un paese sono alimentate ed a loro volta alimentano le spese per gli armamenti del paese ‘avversario’. Con le sue equazioni Richardson si riproponeva anche di capire sotto quali condizioni si potesse arrivare a stati di equilibrio e sotto quali invece si innescessero corse agli armamenti non più controllabili. Il modello di Richardson verrà analizzato in dettaglio nel seguente capitolo.

1.3.2 Stati ed attività

L’idea di ciclo causale ci fornisce uno strumento per analizzare in modo strutturato situazioni complesse rendendole così più comprensibili. Per una migliore comprensione del suo uso, anche con riferimento alla distinzione fra stati ed attività, utilizzeremo l’esempio del conflitto israelo-palestinese. Ovviamente, trattandosi di un conflitto particolarmente complesso e le cui caratteristiche cambiano continuamente nel tempo, ne considereremo solo alcuni aspetti e faremo riferimento ad un momento temporale preciso, la fine del 2004. Alla fine del 2004 era in corso da circa quattro anni la cosiddetta Intifada Al Aksa, con un numero estremamente alto di vittime dalle due parti: fra il 28 settembre 2000 e l’8 settembre 2004 il numero totale delle vittime viene indicato dall’agenzia Afp in 4292, di cui 3277 palestinesi, 943 israeliane e 72 di altra nazionalità. Non ci vuole una capacità di analisi molto sofisticata per cogliere l’esistenza di un perverso ciclo di azioni di violenza che si motivavano vicendevolmente in una spirale che sembra non si possa più interrompere. Da un lato azioni di repressione sotto diverse forme (eliminazione di leader palestinesi etichettati come terroristi, occupazioni di aree palestinesi con relative uccisioni e distruzioni, . . .); dall’altro le azioni più eclatanti sono costituite da attentati suicidi spesso diretti contro la popolazione civile. La repressione viene giustificata come una rappresaglia in risposta agli atten-
Capitolo 1. Problemi e approccio sistemico

tati o come un’azione di prevenzione di futuri attentati; gli attentati d’altra parte sono la vendetta per le vittime della repressione israeliana. Questo ciclo, che è rappresentato in figura 1.5, esprime certamente la coscienza che repressione ed attentati si alimentano vicendevolmente, ma ci fa capire poco dei meccanismi attraverso cui l’uno produce ed alimenta l’altro, né ci fornisce informazioni su quali siano i punti su cui agire per fermare questa spirale di violenza e di terrore.

Figura 1.5. Il ciclo della violenza in Palestina

Ad esempio, guardando il ciclo si potrebbe essere indotti a pensare che basterebbe far cessare la violenza di una delle due parti per fare cessare immediatamente anche quella dell’altra. Ovviamente le cose non sono così semplici. Inoltre appare una sorta di simmetria fra le due parti del conflitto; anche questa è una immagine falsata della realtà\(^{13}\). Se cerchiamo di andare al

\(^{13}\)La mancanza di simmetria nel conflitto va sempre tenuta presente. Israele occupa la Cisgiordania e nei fatti, attraverso insediamenti ed espropriazione di terre, ne ha amnesso una parte rilevante. Questo in aperta violazione del diritto umanitario internazionale (La Convenzione dell’Aia del 1907 e la Quarta Convenzione di Ginevra del 1949) che vieta alla potenza occupante di modificare lo status quo dei territori occupati e soprattutto di creavi insediamenti: “The Occupying Power shall not deport or transfer parts of its own civilian population into the territory it occupies” (Art. 49 della Quarta Convenzione di Ginevra). L’occupazione con quello che comporta, ad esempio in termini di libertà di
di sotto della rappresentazione, molto schematica, di figura 1.5, ci accorgiamo che ci sono altri elementi che entrano in gioco: la paura da un lato e la frustrazione/disperazione dall’altro.

Apparentemente c’è una maggioranza di israeliani che sarebbe disposta all’abbandono dei territori occupati, o almeno della quasi totalità di essi; ciò che veramente blocca è la paura che la nascita di uno stato palestinese non solo non metta fine alle violenze ma metta addirittura a rischio la stessa sopravvivenza dello stato di Israele. Giustificata o no, razionale o irrazionale, tuttavia questa paura esiste, non può essere ignorata in una corretta rappresentazione della situazione e, comunque, appare come un elemento fondamentale nel sostegno che la politica repressiva del governo israeliano gode presso la popolazione.

Dall’altro lato il sostegno, o comunque la non condanna, che caratterizza l’atteggiamento della maggior parte dei palestinesi nei riguardi degli attentati terroristici realizzati dalle frange più estremiste della resistenza palestinese, ha la sua radice nel profondo senso di spossessamento, depravazione e oppressione, che l’occupazione israeliana alimenta. Il cosiddetto “processo di pace” seguito agli accordi di Oslo non solo non ha mitigato tali sentimenti, ma li ha acuiti (per le motivazioni del perché ciò sia potuto accadere rimandiamo alla acuta analisi di Sara Roy (2002)). Infine la estrema violenza della repressione degli ultimi due anni, violenza in molti casi definibile come terroristica, ha ulteriormente aumentato la frustrazione/disperazione della popolazione palestinese. Possiamo ora rappresentare in modo più espressivo il ciclo della violenza in Israele-Palestina per mezzo del grafo di figura 1.6.

In questo nuovo modello, ancora comunque estremamente semplificato, vengono rese esplicite delle informazioni che risultavano nascoste nel modello precedente. Immaginiamo che in un certo istante temporale cessi completamente la repressione da parte dell’esercito israeliano. Basterà ciò per avere una cessazione immediata degli attentati suicidi? La risposta che si può dedurre dal modello è chiaramente negativa. Infatti mentre la repressione è qualcosa che, almeno in principio, può essere interrotta da un giorno all’altro per decisione del governo israeliano, molto diverso è il caso della frustrazione e della disperazione: questi sono sentimenti che non possono essere annullati per decisione di qualcuno. Ci vuole presumibilmente molto tempo e soprattutto azioni di tipo positivo e non solamente negativo (come il non reprimere) per arrivare ad annullare o per lo meno a fare regredire in modo sostanziale sentimenti come quelli della frustrazione e della disperazione. La stessa movimento all'interno della Cisgiordania e da e verso l'estero, ha effetti devastanti sia sulla vita quotidiana dei palestinesi che sulla loro economia. Israele ha evacuato i coloni e l'esercito da Gaza nell'agosto 2005, ma nel momento in cui scrivo (ottobre 2005) continua a mantenere il controllo dei confini di Gaza.
cosa vale nell’altra direzione: un eventuale blocco degli attentati suicidi (ad esempio per azione di una forza di interposizione internazionale o come effetto del muro di separazione) non porterà immediatamente alla scomparsa della paura da parte della popolazione israeliana e quindi alla nascita di un governo più disponibile ad interrompere la repressione e l’occupazione della Cisgiordania e di Gaza.

Possiamo dire che gli elementi (le variabili) presenti nel nostro modello sono di due tipi diversi. Gli elementi repressione ed attentati suicidi fanno riferimento ad azioni o attività che vengono svolte nel sistema, ed è possibile, almeno in linea di principio, pensare di interrompere tali azioni, annullando sia l’una che gli altri. Gli elementi paura e frustrazione/disperazione fanno invece riferimento a sentimenti delle popolazioni, e quando anche tutte le attività nel sistema cessassero, questi sentimenti non scomparirebbero, o almeno non in tempi brevi. Questi ultimi elementi, che possiamo, almeno in principio, misurare esprimendoli in una qualche scala numerica, caratterizzano lo stato del sistema in sé, indipendentemente dalle attività che vi si svolgono; si usa spesso nel linguaggio sistemistico l’espressione variabili di stato per rappresentare elementi di questo tipo, o piuttosto la loro espressione numerica. Nel linguaggio della dinamica dei sistemi, che introdurremo nel prossimo capitolo, con una terminologia presa a prestito dall’idraulica, si par-
1.3. La dimensione dinamica nell’analisi dei sistemi

la di flussi (variabili di flusso) per quelle del primo tipo e di livelli (variabili di livello) per quelle del secondo. I livelli non si azzerano per l’interruzione di tutte le attività del sistema, mentre ciò accade per i flussi.\[^{14}\]

\[^{14}\]È interessante notare che ci sono forti punti di contatto fra i concetti che abbiamo introdotto e il paradigma ABC per l’analisi dei conflitti proposto da Galtung (1996), dove A sta per attitudini, B sta per comportamenti (behavior) e C per contraddizione (contraddiction): nel nostro linguaggio le attitudini corrispondono proprio alle variabili di stato, cioè ai livelli (paura, frustrazione, disperazione, odio, . . .), mentre i comportamenti corrispondono ai flussi (repressione, violenza terroristica, . . .). L’ultimo aspetto, la contraddizione, corrisponde invece agli aspetti strutturali del conflitto.
Capitolo 1. Problemi e approccio sistemico
Capitolo 2

La Dinamica dei Sistemi

2.1 Introduzione

Pur rimanendo nell’ambito dello schema descritto nel precedente capitolo, il processo di analisi e modellazione di un sistema può essere più o meno formalizzato. L’uso di un approccio poco formalizzato che utilizzi principalmente il linguaggio naturale fa certamente guadagnare in espressività, permettendo di rappresentare e descrivere le situazioni più diverse e complesse. Un linguaggio più formalizzato, come ad esempio quello matematico, limita in qualche modo l’espressività ma allo stesso tempo fa guadagnare in rigore ed in certi casi in efficacia/utilizzabilità del modello stesso; useremo nel seguito il termine potenza per indicare queste caratteristiche. Per capire meglio le relazioni tra questi due concetti, espressività e potenza, possiamo, ad esempio, considerare il linguaggio poetico, il linguaggio naturale basato su una precisa sintassi (italiano, inglese, …), ed i linguaggi di programmazione per calcolatori. Il primo, con il suo uso di metafore, con la possibilità di FORZare significati o inventare parole e strutture linguistiche, è certamente il più espressivo. Adatto quindi ad esprimere in modo ricco i nostri stati d’animo o particolari aspetti delle relazioni interpersonali, non è però il più adatto se voglio analizzare un evento politico, oppure descrivere un progetto di cooperazione. Per questi scopi il linguaggio naturale, certamente più povero e rigido di quello poetico, è tuttavia preferibile. Infine, per descrivere una procedura (algoritmo) che debba essere eseguita da una macchina (o anche da un essere umano) è necessario il massimo rigore e l’eliminazione di qualsiasi possibile fonte di ambiguità: qui entrano in gioco i linguaggi di programmazione basati su insiemi estremamente ristretti di parole e di costrutti, e quindi molto poveri, ma allo stesso tempo estremamente rigorosi.

Esistono degli approcci formali alla modellazione basati sul pensiero si-
Capitolo 2. La Dinamica dei Sistemi

estemico, che sono caratterizzati da un buon livello di rigore, ma che sono allo
stesso tempo sufficientemente espressivi per potere rappresentare sistemi an-
che notevolmente complessi. Uno di questi, noto con il nome di Dinamica
dei Sistemi, costituirà l’oggetto del presente capitolo.

La Dinamica dei Sistemi è una metodologia formalizzata e strutturata
per l’analisi e la modellazione di sistemi complessi, allo scopo di analizzarne
e studiarne il comportamento soprattutto nei suoi aspetti dinamici; per la
sua versatilità si presta anche bene ad analizzare situazioni di conflitto.

Rispetto ad altri approcci per la strutturazione e modellazione di sistemi
complessi, la Dinamica dei Sistemi è caratterizzata da un elevato livello di
formalismo che si esprime attraverso una sintassi ben definita, ma anche da
una notevole flessibilità che la rende adatta non solo ad una analisi quan-
titativa, ma anche ad analisi di tipo qualitativo. Da questo punto di vista
rappresenta un buon compromesso tra espressività e potenza.

Le componenti fondamentali del linguaggio della Dinamica dei Sistemi
sono i livelli, i flussi, e le variabili ausiliarie. Abbiamo già introdotto il si-
gnificato di quelle particolari variabili che sono i livelli ed i flussi; vedremo in
seguito attraverso esempi come esse vengano rappresentate ed utilizzate nei
modelli di Dinamica dei Sistemi. Le variabili ausiliarie rappresentano variab-
ili che non sono direttamente riconducibili né a flussi né a livelli, variabili
corrispondenti a valori intermedi utilizzati nelle formule che definiscono il
modello, oppure costanti esterne al modello.

Un particolare rilievo hanno i confini del sistema che vogliamo modellare.
Nella modellazione di un particolare sistema è necessario ad un certo pun-
to definire quali sono i confini che definiscono il sistema in esame e quale è
quindi la parte della realtà che rimane fuori, cioè quella parte di realtà che
possiamo assumere non modificata (e quindi indipendente) da ciò che avvie-
né all’interno del sistema. Ad esempio, supponendo di dovere riprogettare
e realizzare il sistema scolastico in un’area di un paese in via di sviluppo,
possiamo assumere che la domanda di istruzione (numero di bambini nelle
diverse fasce di età) sia data sulla base delle analisi e delle proiezioni effet-
tuate dagli organismi internazionali che hanno chiesto l’intervento, così come
possiamo assumere che il livello dell’economia del paese sia un dato esogeno.
Ciò può essere ragionevole ai fini dell’intervento che stiamo programmando,
pur facendoci trascurare il fatto che, ad esempio, un miglioramento del si-
istema scolastico ha come effetto un miglioramento della economia locale e
modifiche nei comportamenti sociali che possono a loro volta avere effetti
sulla domanda di istruzione. Pertanto nel nostro caso la domanda di ser-
vizi scolastici non sarà rappresentata da un variabile, ma piuttosto da una
costante; le costanti sono proprio quei valori numerici che caratterizzano il
sistema, e che non vengono modificati dal suo funzionamento, cioè che ri-
2.2. Modello di Richardson

spetto ad esso sono esogeni. Ad esempio, rimanendo sempre nell’ambito di un sistema scolastico, il numero massimo di studenti per classe è in molti casi un dato fissato apriori da delibere a livello locale o nazionale, se non da leggi nazionali, e pertanto può essere considerato come una costante esterna al sistema. Naturalmente possiamo fare scelte diverse e, ad esempio, con riferimento agli esempi precedenti, possiamo considerare sia la domanda di istruzione che il numero massimo di studenti per classe come variabili endogene e non come costanti; ad esempio, la domanda può essere una funzione delle variabili economiche, e il numero di studenti per classe una variabile dipendente dalla domanda e dalle disponibilità di bilancio. In questo caso i confini del sistema risulteranno diversi e più ampi.

Un’altro aspetto in cui è rilevante la distinzione fra un fuori ed un dentro rispetto al sistema in esame riguarda il fatto che i flussi hanno spesso origine e/o fine al di fuori del sistema in esame. Ad esempio il numero di nuovi bambini che entrano ogni anno nel sistema scolastico dipende da dinamiche della popolazione che potremmo considerare esterne al sistema scolastico in esame. Abbiamo quindi un flusso, corrispondente ai bambini che raggiungono l’età scolare, che entra nel sistema provenendo dall’esterno. Similmente, i bambini che completano il loro ciclo di studi escono fuori dal sistema e costituiscono un flusso in uscita. Queste situazioni vengono rappresentate attraverso l’introduzione nel modello di sorgenti e destinazioni che rappresentano l’esterno rispetto al sistema.

Non va mai dimenticato che la distinzione fra dentro e fuori è una scelta non un dato. Ciò che in un modello è stato posto fuori può essere posto dentro in un altro modello. Chiaramente più elementi sono inseriti nel sistema, più fedele è la rappresentazione della realtà in esame che stiamo costruendo, ma corrispondentemente più difficile (ed anche costoso) risulta utilizzare il modello per individuare gli elementi più rilevanti (quelli su cui agire) ai fini degli obiettivi del modello.

Infine le diverse variabili e costanti del modello saranno poi collegate attraverso relazioni di tipo causale e/o attraverso passaggi immateriali di informazioni.

In questo paragrafo utilizzeremo il modello della corsa agli armamenti di Richardson, cui abbiamo accennato precedentemente, per introdurre in modo induttivo ed intuitivo la Dinamica dei Sistemi.

2.2 Modello di Richardson

Nella versione che qui presentiamo del modello di Richardson si considera una situazione in cui due stati (o due coalizioni di stati) sono, almeno po-
Capitolo 2. La Dinamica dei Sistemi
tenzialmente, avversari, e ciascuno costruisce la sua capacità di difesa in
funzione della sua percezione della aggressività e pericolosità dell’altro. La
forza militare di ciascuno degli stati, misurata ad esempio attraverso il livello
di spesa militare, costituisce una garanzia di capacità di difesa, e quindi di
sicurezza per quello stato, ma, allo stesso tempo, viene percepita dall’altro
come una minaccia e quindi è fonte di insicurezza1. Un modo per misurare
la forza militare di un paese può essere quello di considerare le spese militari
quali risultano dal bilancio della difesa.

Nel suo modello Richardson assume che la decisione di aumentare o diminuir
il livello degli armamenti in possesso di un paese dipenda sia dal livello
degli armamenti del paese avversario che da quello dei propri armamenti. In
particolare, più alto è il livello degli armamenti del paese avversario maggiore
è la motivazione ad aumentare i propri, mentre più alti sono i propri minore
è la motivazione ad aumentarne ulteriormente il livello; potrebbe anzi, in
quest’ultimo caso, ritenersi opportuna una riduzione in considerazione degli
alti costi sociali del destinare agli armamenti risorse che vanno sottratte ad
altri settori. A questi elementi Richardson aggiunge un termine che tiene
conto del livello di ostilità, dovuto a motivi precedenti2 ed indipendenti dal
livello degli armamenti, che caratterizza i rapporti tra i due paesi; valori ne-
gativi di tale termine corrisponderebbero ad elevati livelli di amicizia e di
cooperazione fra i due paesi.

Descriviamo ora in modo formale il modello di Richardson. Indichiamo
con \(x \) la spesa militare del primo paese, che chiameremo \(Egolandia \), e con
\(y \) la corrispondente spesa del secondo paese, che chiameremo \(Alterlandia \).
Chiaramente sia \(x \) che \(y \) sono funzioni del tempo, e verranno quindi scritte
come \(x(t) \) e \(y(t) \) rispettivamente.

Il modello di Richardson è descritto dalle eseguenti equazioni3:

\[
\begin{align*}
 x(t + \Delta t) &= x(t) + f(x(t), y(t))\Delta t, \\
 y(t + \Delta t) &= y(t) + g(x(t), y(t))\Delta t.
\end{align*}
\]

1Richardson cita a questo proposito uno scritto di Sir Edward Grey, Segretario agli
esteri britannico allo scoppio della prima guerra mondiale: “L’incremento degli armamenti,
che ogni nazione si aspetta produca una sensazione di forza ed un senso di sicurezza, non
produce questi effetti. Al contrario, produce una consapevolezza della forza delle altre
nazioni ed un senso di paura. . . . L’enorme crescita degli armamenti in Europa, il senso
di insicurezza e di paura causato da essi - fu questo che rese la guerra inevitabile, . . . Questa
è la causa reale e definitiva dell’origine della Grande Guerra” (D’Angelo, 2002).

2Ad esempio dovuto a precedenti controversie o rivendicazioni territoriali

3Quelle che qui descriviamo sono la discretizzazione delle originali equazioni differenziali
proposte da Richardson: \(\frac{dx}{dt} = f(x, y), \frac{dy}{dt} = g(x, y) \).
Le funzioni $f(x, y)$ e $g(x, y)$ rappresentano il tasso di crescita (crescita per unità di tempo) del livello di spesa per la difesa dei due paesi. Le equazioni dicono che, per ogni istante di tempo t, il livello della spesa dopo il periodo di tempo Δt (cioè al tempo $t + \Delta t$) è dato dal livello di spesa al tempo t più la variazione avvenuta nel periodo Δt, variazione ottenuta moltiplicando il tasso di crescita per Δt. Se il tasso di crescita fosse negativo si avrebbe una diminuzione del livello di spesa.

In questo modello, usando la terminologia precedentemente introdotta, si ha che x ed y sono dei livelli, mentre i due tassi di variazione, $f(x, y)$ e $g(x, y)$, sono dei flussi.

2.3 Il linguaggio della dinamica dei sistemi

Riscriviamo ora il modello di Richardson usando il linguaggio della Dinamica dei Sistemi, in modo da illustrare gli elementi base di tale linguaggio: livelli, flussi, variabili ausiliarie, costanti e relazioni causalì\(^4\).

2.3.1 Livelli e flussi

I livelli ed i flussi, che abbiamo già introdotto rappresentano le componenti principali di questo linguaggio. Ricordiamo brevemente che i livelli corrispondono a quelle grandezze nel sistema che non verrebbero modificate se noi fermassimo idealmente il tempo interrompendo quindi tutte le attività, e che possono essere considerate come rappresentative dello stato del sistema; i flussi invece corrispondono a quelle grandezze che rappresentano attività effettivamente in corso nel sistema. Da un altro punto di vista, possiamo dire che i flussi sono il modo attraverso cui è possibile influire sul sistema. È attraverso i flussi che si possono mettere in atto le decisioni miranti a modificare il sistema: non è possibile agire direttamente sui livelli, se non attraverso i flussi. Dal punto di vista grafico i livelli vengono rappresentati per mezzo di rettangoli (che richiamano dei serbatoi), con canali di input e di output, mentre i flussi vengono rappresentati per mezzo di valvole su questi canali. Delle nuvolette indicano l’esterno al sistema in esame: dall’esterno arriva il denaro che serve per l’aumento delle spese militari, e all’esterno del nostro sistema va quello liberato da una eventuale diminuzione delle spese.

\(^4\)In questo capitolo, per la costruzione dei modelli e per le simulazione che verranno effettuate, faremo uso del software applicativo Vensim. Una versione utilizzabile gratuitamente per scopi non commerciali, Vensim PLE, è scaricabile dal sito http://www.vensim.com//.
Ad esempio le equazioni di Richardson possono essere rappresentate come in figura 2.1.

![Rappresentazione grafica delle equazioni di Richardson](image1)

Figura 2.1. *Rappresentazione grafica delle equazioni di Richardson*

Qui invece di usare le notazioni compatte delle equazioni 2.1 e 2.2, si è preferito indicare in modo esplicito il significato delle componenti del modello. Ricordiamo che, come risulta dalle equazioni, i tassi di crescita delle spese per i due paesi sono essi stessi funzione del livello delle spese, anche se ciò non appare in modo esplicito nella figura.

In figura 2.1, abbiamo assunto che il flusso possa essere sia positivo (spese in crescita) che negativo (spese in diminuzione). In molti casi risulta più conveniente distinguere tra un flusso in entrata ed un flusso in uscita, e si usano rappresentazioni del tipo di quella della figura 2.2.

![Relazione fra livelli e flussi](image2)

Figura 2.2. *Relazione fra livelli e flussi*

Dal punto di vista analitico possiamo rappresentare le relazioni fra livelli e flussi attraverso equazioni del tipo
Livello\((t + \Delta t) = Livello(t) + (FlussoInput(t) - FlussoOutput(t))\Delta t, \quad (2.3)\)

dove con FlussoInput e FlussoOutput si sono indicate le variazioni per unità di tempo, in aumento ed in diminuzione rispettivamente, della variabile Livello, mentre con \(\Delta t\) si è indicato l’intervallo di tempo tra una valutazione delle variabili e la successiva nel processo di simulazione. L’equazione esprime il fatto che il valore della variabile Livello al tempo \(t + \Delta t\) è uguale al valore al tempo \(t\) più la variazione totale che si è verificata nell’intervallo di tempo \([t, t + \Delta t]\). Osserviamo che le variabili FlussoInput\((t)\) e FlussoOutput\((t)\) rappresentano le variazioni medie unitarie nell’intervallo \([t, t + \Delta t]\), pertanto l’equazione 2.3 descrive tanto più accuratamente l’andamento della variabile Livello quanto più è piccolo il valore di \(\Delta t\).

2.3.2 Variabili ausiliarie e costanti

L’equazione 2.3 consente di descrivere l’andamento dei livelli, e delle loro variazioni in dipendenza dei flussi in ingresso ed in uscita, una volta che siano note le condizioni iniziali, cioè ad esempio, nel caso delle equazioni di Richardson, il livello iniziale delle spese per armamenti dei due paesi.

Per potere però costruire il modello completo abbiamo bisogno di rappresentare i legami tra le diverse variabili e di definire le funzioni che rappresentano i flussi. A questo scopo abbiamo bisogno di introdurre delle nuove grandezze: variabili ausiliarie e costanti.

Richardson nel suo modello ha ipotizzato le seguenti espressioni per i tassi di crescita:

\[
\begin{align*}
 f(x, y) &= ky - \alpha x + p, \\
 g(x, y) &= lx - \beta y + q.
\end{align*}
\]

Ciò è il tasso di crescita della spesa militare di ciascuno dei due paesi dipende da tre termini:

1. Un termine proporzionale al livello di spesa dell’altro paese, con un coefficiente di proporzionalità, non negativo, che misura il senso di insicurezza del paese e che chiameremo coefficiente di difesa; con \(k\) abbiamo indicato il coefficiente di difesa di Egolandia, e con \(l\) quello di Alterandia.

2. Un termine proporzionale al livello della spesa del paese stesso: questo termine compare con un segno negativo perché la spesa militare ha un effetto frenante sull’economia del paese, togliendo risorse ad altri
Capitolo 2. La Dinamica dei Sistemi

settori, e viene detto \textit{coefficiente di costo}; i coefficienti di costo per i due paesi sono indicati con α e β, che assumiamo entrambi positivi.

3. Un termine costante che rappresenta il \textit{coefficiente di ostilità}, e che misura l’ostilità, dovuta a motivi precedenti ed indipendenti dal livello degli armamenti, che ciascun paese ha nei riguardi dell’altro; valori negativi di questa costante corrispondono a sentimenti di amicizia verso l’altro paese. Nelle equazioni i coefficienti di ostilità sono stati indicati con p e q.

Abbiamo allora in questo modello sei costanti: i coefficienti di difesa, di costo e di ostilità per i due paesi. Possiamo poi introdurre delle variabili ausiliarie e precisamente

\begin{align*}
 u &= ky + p, \\
 v &= \alpha x, \\
 z &= lx + q, \\
 w &= \beta y.
\end{align*}

Le variabili u e z rappresentano la propensione a spendere per gli armamenti (una sorta di misura di bellicosità), e v e w la resistenza a tale spesa, rispettivamente per Egolandia e per Alterandia. Egolandia tenderà ad aumentare il suo livello di spesa per armamenti se $u > v$, ed a ridurlo se $u < v$. Similmente Alterandia tenderà ad aumentare il suo livello di spesa per armamenti se $z > w$, ed a ridurlo se $z < w$.

Il modello di Richardson può essere scritto nel linguaggio dell’analisi dei Sistemi attraverso il modello di figura 2.3, in cui sono stati evidenziati i coefficienti di difesa, costo ed ostilità. Gli archi orientati rappresentano le relazioni causa-effetto: gli archi che vanno dai tre coefficienti (difesa, costo ed ostilità) e dalle spese dei due paesi verso l’elemento che rappresenta il flusso \textit{variazione spese} indicano che quest’ultima variabile è funzione delle altre e quindi che il suo valore è determinato dal valore delle altre.

Osserviamo che i confini del sistema tracciati da Richardson sono molto ristretti. Ad esempio l’economia dei due paesi rimane quasi completamente fuori; essa compare solo indirettamente attraverso il coefficiente di costo: si può ragionevolmente presumere che ad una economia debole corrisponda un coefficiente di costo elevato, e viceversa ad una economia forte corrisponda un basso coefficiente di costo. Non compare neppure alcun limite di bilancio alle spese militari; anche in questo appare chiara l’assenza di un collegamento con l’economia dei paesi. In pratica le cose sono notevolmente più complesse: le spese militari hanno un effetto tutt’altro che semplice da descrivere sull’economia complessiva dei paesi e l’economia condiziona molto la capacità di
2.4 Analisi della dinamica del sistema

Analizziamo ora la dinamica del sistema descritto da Richardson. Consideriamo uno dei due paesi, ad esempio Egolandia. Supponiamo che in un dato anno le spese x ed y siano tali per cui risulti $u = v$, cioè:

$$ky + p = \alpha x. \quad (2.4)$$

Figura 2.3. Il Modello di Richardson

spendere per la difesa. Va comunque ricordato che i limitati strumenti analitici e computazionali di cui Richardson disponeva non avrebbero permesso l’analisi di sistemi molto più complessi\(^5\).

\(^5\)In quegli stessi anni il matematico italiano Volterra (1926a,b), costruiva un modello di interazione fra due popolazioni, una di prede ed una di predatori, considerato uno dei primi e, per l’epoca, più innovativi esempi di modellistica matematica. Tale modello ha dal punto di vista matematico rilevanti punti di contatto con quello che stiamo descrivendo, e ciò conferma l’interesse e la novità della intuizione di Richardson.
In questo caso, poiché le forze che spingono ad aumentare la spesa e quelle che spingono invece a ridurla hanno uguale valore, Egolandia tenderà a mantenere costante il livello dei suoi armamenti. Diciamo allora che dal punto di vista di Egolandia ci si trova in una situazione di equilibrio. Dalla equazione 2.4 possiamo ricavare il valore $\bar{x}(y)$ che, per ogni dato y, è di equilibrio per Egolandia:

$$\bar{x}(y) = \frac{p}{\alpha} + \frac{k}{\alpha}y.$$ \hfill (2.5)

Chiaramente se risultasse $u > v$, allora sarebbe $ky + p > \alpha x$, e quindi:

$$x < \frac{p}{\alpha} + \frac{k}{\alpha}y = \bar{x}(y).$$ \hfill (2.6)

Egolandia, avendo un livello di spese per armamenti minori di quelle considerate di equilibrio, tenderà allora ad accrescerle. Al contrario se fosse $u < v$, le spese sarebbero maggiori di quelle di equilibrio ed il risultato sarebbe una tendenza alla riduzione degli armamenti. La cosa può essere vista in modo efficace attraverso il seguente grafico\(^7\), dove è stata indicata la retta luogo dei punti che soddisfano la 2.4, cioè la retta di equazione $y = -\frac{p}{k} + \frac{\alpha}{k}x$. Questa retta rappresenta il luogo dei punti che sono di equilibrio per Egolandia.

Figura 2.4. Retta di equilibrio

\(^6\)Ricordiamo che per ipotesi è $\alpha > 0$.

\(^7\)Osserviamo che, nel grafico, gli spostamenti dovuti alle scelte di Egolandia possono avvenire solamente lungo direzioni orizzontali, perché Egolandia può solo agire sul valore della variabile x. Similmente gli spostamenti dovuti a scelte di Alterandia possono essere solo verticali, perché Alterandia può agire solo sul valore della variabile y.
Consideriamo tre situazioni rappresentate rispettivamente dai punti \(a\), \(b\) e \(c\) nella figura. Il punto \(a\) è un punto di equilibrio per Egolandia, il punto \(b\) è caratterizzato da una tendenza alla riduzione delle spese (indicata in figura da una freccia che punta nella direzione delle \(x\) decrescenti), mentre il punto \(c\) è caratterizzato da una tendenza all’aumento delle spese (indicata in figura da una freccia che punta nella direzione delle \(x\) crescenti).

L’analisi fatta ci fornisce un’idea di come si comporta Egolandia, per ogni dato valore della spesa in armamenti di Alterlandia, ma non ci dice nulla sulla dinamica del sistema costituito dai due paesi. Per potere avere una idea di tale dinamica, dobbiamo inserire nel quadro anche il secondo paese, per il quale, con considerazioni analoghe a quelle sviluppate finora, possiamo definire una retta di equilibrio\(^8\) con equazione \(y = \frac{q}{\beta} + \frac{l}{\beta}x\). Nella figura seguente sono indicate le rette di equilibrio per entrambi i paesi.

Figura 2.5. Caso di sistema stabile

In generale le due rette dividono il piano in 4 regioni, indicate in figura con numeri romani. A seconda di dove si trovi il punto \((x, y)\) rappresentativo delle spese per armamenti, avremo diversi comportamenti dei due paesi: ad esempio, se il punto si trova nella regione \(IV\) come il punto \(e\), allora la tendenza sarà ad una diminuzione delle spese per entrambi i paesi. Opposta è la situazione per la regione \(I\), mentre nelle regioni \(II\) e \(III\) per uno dei paesi si avrà un aumento delle spese e per l’altro una diminuzione. È abbastanza intuitivo verificare che, poiché ciascun paese tende verso la propria retta di equilibrio, il sistema descritto nella figura è stabile, cioè tende verso il punto di equilibrio \(a\). Diversa sarebbe la situazione se la pendenza della retta di

\(\textit{Anche qui ricordiamo che abbiamo assunto } \beta > 0.\)
equilibrio di Alterandia fosse maggiore di quella della retta di equilibrio di Egolandia. Questo è il caso indicato nella figura 2.6.

$$y = \frac{q}{\beta} + \frac{1}{\beta}x \quad \text{(Alter)}$$

$$y = -\frac{p}{k} + \frac{\alpha}{k}x \quad \text{(Ego)}$$

Figura 2.6. Caso di sistema instabile

Qui la regione IV è caratterizzata da una corsa agli armamenti di entrambi i paesi senza che si possa mai arrivare ad un punto di equilibrio, mentre la regione I è caratterizzata da una diminuzione degli armamenti, anch’essa senza fine9: il sistema pertanto tende ad essere instabile. Nelle altre due regioni invece gli spostamenti tendono verso la situazione di equilibrio.

La differenza fra il caso di stabilità e quello di instabilità sta nella diversa pendenza relativa delle due rette. Per comprendere meglio cosa ciò significhi, osserviamo che le pendenze per le rette di equilibrio di Egolandia e di Alterandia sono date rispettivamente da $\frac{\alpha}{k}$ e da $\frac{1}{\beta}$. Nel caso di stabilità risulta $\frac{\alpha}{k} > \frac{1}{\beta}$, da cui si ricava $\alpha \beta > kl$, cioè il prodotto dei coefficienti di costo è maggiore del prodotto dei coefficienti di difesa. Siamo cioè in una situazione in cui, a livello aggregato, gli effetti negativi sulle economie delle spese militari prevalgono sulle preoccupazioni dovute alla possibile aggressività del nemico. Opposto è il caso di instabilità. Qui risulta $\frac{\alpha}{k} < \frac{1}{\beta}$, da cui $\alpha \beta < kl$. Si ha allora una prevalenza delle preoccupazioni circa l’aggressività del nemico rispetto al costo che le crescenti spese militari comportano.

Supponiamo di porre $l = k = 1$, $\alpha = 2$, $\beta = 1$ e $p = q = 10$. È facile verificare che siamo in un caso di stabilità e l’andamento delle spese dei due paesi è quello riportato in figura 2.7.

Nella figura 2.8 è invece riportato l’andamento delle spese militari in un caso di instabilità ($l = k = 2$, $\alpha = 2$, $\beta = 1$ e $p = q = 10$)

9In realtà la diminuzione degli armamenti è limitata dal fatto che non ha senso avere per le variabili x ed y valori negativi, anche se questo vincolo non è stato inserito esplicitamente nel modello.
2.4. Analisi della dinamica del sistema

In questa analisi abbiamo supposto le rette come date. In realtà si può pensare ad azioni che modifichino i parametri del modello. Ad esempio, nel caso indicato in figura 2.6, un’azione di educazione alla pace ed alla convivenza può portare ad una diminuzione dei coefficienti di ostilità al punto anche da invertirne il segno. L’effetto è quello di una traslazione delle due rette che porta ad una riduzione della regione IV a vantaggio della I, ma non ad una sua scomparsa: il sistema continua ad essere instabile anche se risulta meno probabile che si inneschi una corsa illimitata agli armamenti. Un effetto più efficace si avrebbe facendo crescere i coefficienti di costo, α e β. In questo caso l’effetto sarebbe duplice, una traslazione della retta di equilibrio di Alterandia ed una rotazione di entrambe le rette, e si potrebbe arrivare alla situazione di stabilità di figura 2.5. Questo effetto potrebbe essere raggiunto ad esempio attraverso una mobilitazione della popolazione che esprimesse la propria indisponibilità ad accettare limitazioni del proprio benessere per permettere spese militari crescenti. Si può infine pensare ad una azione che porti alla diminuzione dei coefficienti di difesa, con l’effetto

Figura 2.7. Andamento delle spese militari: stabilità
Capitolo 2. La Dinamica dei Sistemi

Figura 2.8. Andamento delle spese militari: instabilità

di una traslazione della retta di Egolandia e di una rotazione, dovuta ad una
variazione di pendenza, di entrambe le rette. Ciò potrebbe ad esempio essere l’effetto di una intensificazione degli scambi commerciali fra i paesi, che renda economicamente molto costoso per entrambi un eventuale conflitto, ma soprattutto che accresca la conoscenza e la fiducia fra le due popolazioni. Questo significa allargare i confini del nostro modello, inserendo degli elementi che prima erano stati esclusi.

Ampliamo a questo punto il modello inserendo gli scambi commerciali fra due paesi. L’intensificarsi delle relazioni fra i paesi ha un duplice effetto. Da un lato, creando un clima di cooperazione, diminuisce il livello di ostilità e di paura nella popolazione e nei governi. Dall’altro crea degli interessi comuni che rendono maggiori i danni ed il costo di una eventuale guerra, e, poiché questo vale per entrambi i paesi, diminuisce il senso di insicurezza. Nel nostro modello possiamo assumere che le relazioni commerciali abbiano l’effetto di fare diminuire sia il coefficiente di difesa che quello di ostilità.

2.4. Analisi della dinamica del sistema

Il modello risultante è quello della figura 2.10, dove abbiamo evidenziato il fatto che il coefficiente di difesa ed il coefficiente di ostilità, che prima erano delle costanti (e quindi esogene rispetto al sistema), sono ora funzioni del livello di scambi tra i paesi, e quindi variabili endogene. Abbiamo assunto che tali funzioni siano decrescenti all’aumentare del livello degli scambi: i coefficienti di difesa e di ostilità diminuiscono all’aumentare degli scambi commerciali, tendendo a zero, a partire dal valore iniziale, secondo una funzione esponenziale negativa, cioè una funzione il cui andamento è indicativamente del tipo di quello riportato in figura 2.11. L’uso di una funzione esponenziale negativa consente di tenere in conto gli effetti di saturazione: l’effetto di un ulteriore incremento degli scambi commerciali diminuisce man mano che il livello degli scambi aumenta.

In figura 2.12 viene riportato l’andamento fornito dal modello ampliato nel caso del sistema instabile visto precedentemente, nell’ipotesi che gli scambi siano a livello 0 fino all’anno 5 e poi comincino a crescere linearmente fino a raggiungere all’anno 10 un valore pari a 511. In esso si evidenzia il fatto che l’avere introdotto gli scambi commerciali porta ad una stabilizzazione del sistema: le spese crescono in assenza di scambi, ma tendono dopo un po’ a decrescere all’aumentare del livello degli scambi. Osserviamo come, mentre il livello degli scambi inizia a crescere a partire dal quinto anno, l’effetto sulle spese militari comincia ad essere percettibile a partire dall’ottavo anno: è necessario che il livello degli scambi commerciali raggiunga una sufficiente

11Possiamo pensare a questi numeri come indicatori di intensità degli scambi, in una scala che vada da 0 (scambi nulli) fino a 10 (elevato livello di integrazione economica). Osserviamo che le scale per le spese militari e per gli scambi commerciali sono diverse.
massa critica perché si inverta la tendenza alla crescita delle spese militari.

Avvertiamo il lettore che in questa analisi i valori numerici usati hanno una importanza limitata; essi ci servono solamente a scopo esemplificativo, per una comprensione delle dinamiche indotte dalle azioni ipotizzate (aumento degli scambi commerciali). Si tratta di una analisi essenzialmente qualitativa.

Chiaramente gli scambi commerciali hanno l’effetto di aumentare il peso dei cicli negativi rispetto a quelli positivi e quindi di spostare il sistema verso condizioni di stabilità.

2.5 Ritardi

Nel modello della figura 2.10 abbiamo assunto che l’effetto degli scambi commerciali sul valore dei coefficienti sia immediato. Ciò non è realistico. In genere, perché gli effetti di un dato fenomeno possano verificarsi, passa un
2.5. Ritardi

certo tempo, ci sono cioè dei ritardi che possono avere una grande influenza sulla dinamica del sistema in esame.

In questo caso gli effetti del crescere degli scambi commerciali sui coefficienti di difesa e di ostilità non sono immediati né diretti, ma passano attraverso un cambiamento di percezione che la popolazione di un paese ha dell’altro paese. Il moltiplicarsi ed arricchirsi degli scambi produce una maggiore fiducia reciproca fra le popolazioni, e questa accresciuta fiducia produce un cambiamento (decrescita) dei coefficienti di difesa e di ostilità. Ma si tratta ovviamente di un processo lungo e soprattutto progressivo. Ciò è stato rappresentato nel modello con l’aggiunta di un nuovo livello (vedi figura 2.13). In questo modello gli scambi commerciali si traducono, attraverso un coefficiente di conversione, in una variazione del livello di fiducia pro-
porzionale alla differenza tra livello attuale di fiducia e livello corrispondente all’intensità degli scambi commerciali, ed inversamente proporzionale al coefficiente di ritardo. Il coefficiente di ritardo fornisce una misura dell’inerzia del sistema a rispondere a variazioni negli scambi commerciali: maggiore è il valore del coefficiente più lenta è la crescita del livello di fiducia al crescere del livello degli scambi commerciali. Con ciò si vuole tenere conto del fatto che pregiudizi o paure radicate richiedono spesso molto tempo per essere superate.

La conseguenza del nuovo livello aggiunto è di un ritardo degli effetti degli scambi commerciali sulla corsa agli armamenti, come mostrato dal grafico di figura 2.14. Come si può vedere in questo caso il picco nelle spese per gli armamenti si verifica più tardi, ma soprattutto il livello raggiunto da tali spese è molto più elevato12. Questo comporta rischi di conflitto prima che si sia

12Osserviamo che le scale sono diverse fra le due figure e, all’interno della stessa, fra le diverse variabili.
cominciato a sentire l’effetto dei buoni rapporti commerciali. Tra l’altro nel modello non è stato inserito un ciclo positivo che invece sarebbe ragionevole considerare e che nella fase iniziale può accrescere l’instabilità del sistema: l’aumento delle spese militari produce una diminuzione del livello di fiducia, che a sua volta produce un aumento dei coefficienti di difesa e di ostilità, che produce un ulteriore aumento delle spese militari. Ovviamente questo ciclo ha un effetto stabilizzante quando le spese cominciano a diminuire.

Questo semplice modello ci fa capire che azioni tendenti a migliorare il clima di fiducia (quella che abbiamo inserito nel modello è solamente esemplificativa, altre se ne possono proporre) possono risultare ineficaci proprio a causa dei ritardi insiti nel sistema.

Questo modello comunque, anche se a livello estremamente semplificato, ci fornisce un esempio di uso dei modelli. Ricordiamo che i modelli di cui qui si parla non vanno intesi come strumenti predittivi (non ci diciamo ciò che avverrà fra un anno o fra 10 anni) sono piuttosto strumenti di apprendimento che ci fanno capire meglio alcuni meccanismi del funzionamento e delle dinamiche dei sistemi reali. Costretti ad esplicitare i nostri modelli mentali, abbiamo la possibilità di verificarne il senso, sottoponendoli ad un esame critico, e siamo messi in grado di comunicarli. Il nostro conoscere avviene comunque attraverso modelli. Il problema è che spesso non ne siamo coscienti: le persone non si distinguono tra chi usa modelli e chi non ne fa uso, ma fra chi è cosciente di usarli e chi non lo è. Infine, possiamo affermare che non ha senso distinguere tra modelli che sono una rappresentazione fedele della realtà e modelli che non lo sono: tutti i modelli sono ‘infedeli’, in quanto rappresentazioni sempre molto parziali della realtà e da essa molto lontani. Ci sono però modelli utili e modelli inutili: sono utili quelli che ci permettono di comprendere meglio la realtà e che ci aiutano a prendere decisioni efficaci rispetto ai nostri obiettivi.

Riprendiamo ora il concetto di ritardo che, insieme a quelli di livello, flusso e di cicli causali, svolge un ruolo fondamentale nel paradigma per la costruzione di modelli basato sulla dinamica dei sistemi. Un ritardo può essere rappresentato per mezzo di un blocco (black box) in cui entra un segnale ed esce una risposta (vedi figura 2.15).

Presentiamo ora due tipi fondamentali di blocchi che consentono di rappresentare ed introdurre i ritardi in un modello di dinamica dei sistemi, il ritardo pipeline, ed il ritardo esponenziale. Il primo corrisponde ad una situazione in cui ad un segnale di una data forma e intensità corrisponde una risposta di uguale forma e intensità, ma differita nel tempo. Ad esempio un ritardo pipeline di valore 3 è riportato nella figura 2.16, dove abbiamo assunto di avere come segnale in ingresso un impulso di ampiezza unitaria al tempo 2; in uscita si avrà un impulso di uguale ampiezza al tempo 5. Un
Capitolo 2. La Dinamica dei Sistemi

Figura 2.14. *Andamento delle spese militari nel caso del modello con ritardi*

Figura 2.15. *Blocco di ritardo*

Ritardo di questo tipo può essere realizzato concettualmente per mezzo di un blocco come quello in figura 2.17, in cui si pone:

\[
Flusso_{Output}(t) = Flusso_{Input}(t - R),
\]

dove \(R \) è il valore del ritardo.

Nel caso del ritardo esponenziale la situazione è diversa: il blocco funziona da livello, accumulando le quantità in ingresso (segnale) e fornendo in uscita (risposta) un flusso unitario pari al valore del livello diviso per un coefficiente di ritardo. La situazione è illustrata nella figura 2.18, dove un impulso al tempo 0 in ingresso produce in uscita una risposta smorzata che tende asintoticamente a zero. Nella figura sono presentate le risposte per due valori di ritardo, 3 e 6. Come si vede, più grande è il ritardo più smorzata è la risposta e più lentamente il suo effetto si annulla nel tempo; al limite, con ritardo 1, si ha in uscita un impulso unitario ritardato di una unità di tempo, cioè si ha un ritardo *pipeline* di valore 1. Un ritardo di questo tipo può essere rappresentato per mezzo del blocco di figura 2.19, in cui si pone:

\[
Flusso_{Output}(t) = Livello(t)/R,
\]
2.5. Ritardi

dove R è il valore del ritardo.

Altri tipi di ritardi possono essere ottenuti mettendo in serie più blocchi di ritardo esponenziale. Particolarmente usato è il ritardo del terzo ordine ottenuto con tre blocchi in serie, ed utilizzando per ciascuno di essi un valore di ritardo pari ad un terzo del valore voluto.

Molto spesso il ruolo dei ritardi viene sottovalutato e ciò può portare a prendere decisioni sbagliate con risultati opposti a quelli che si vogliono ottenere. Riportiamo nel seguito due esempi.

2.5.1 Diffusioni di inquinanti

In Olanda, fra gli anni 1960 e 1990, fu abbondantemente usato, nelle coltivazioni di patate e di bulbi, un disinfectante del suolo, il DCPe (1-2 Dicloropropene) contenente un inquinante, il 1-2 Dicloropropano (DCPa), che
Capitolo 2. La Dinamica dei Sistemi

Figura 2.18. *Ritardo esponenziale*

Figura 2.19. *Blocco di ritardo esponenziale del primo ordine*

ha una vita molto lunga e filtra nel terreno fino a raggiungere, dopo molto tempo (alcuni decenni) le falde acquifere, inquinandole. Pertanto anche se l’uso del DCPe è stato bandito nel 1990, ci si aspetta nei prossimi anni un inquinamento molto consistente (superiore ai livelli accettabili) delle falde.\(^\text{13}\)

Una situazione come questa può essere rappresentata per mezzo del modello di figura 2.20. In questo modello gli elementi principali sono due livelli ed un blocco di ritardo *pipeline* fra di essi; i due livelli realizzano essi stessi dei ritardi di tipo esponenziale. L’inquinante entra nel sistema (flusso di ingresso a sinistra) e viene immagazzinato nel terreno, dove in parte viene assimilato o assorbito attraverso processi naturali ed in parte percola verso gli strati intermedi del terreno. Nel terreno una percentuale dell’inquinante si decompone e scompare (la decomposizione è un processo che avviene con

\(^{13}\)Questo esempio è stato ripreso da Meadows et al. (1992).
un ritardo esponenziale), mentre un’altra parte scende nelle falde sottostanti attraverso un processo di percolazione (anche qui un ritardo esponenziale). Il processo di percolazione dura un certo tempo (ritardo pipeline), dopo di che l’inquinante raggiunge la falda acquifera, dove si accumula e man mano viene liberato attraverso processi di decadimento naturale: anche qui il flusso in uscita è proporzionale alla quantità immagazzinata in falda, e quindi si ha di nuovo un ritardo esponenziale.

Figura 2.20. Un modello di diffusione di inquinanti

Nella figura 2.21 è stato riportato un tipico andamento nel tempo della concentrazione dell’inquinante nelle falde acquifere confrontato con le curve dell’inquinante usato e di quello rilasciato nel terreno. Qui abbiamo supposto l’uso di una quantità costante di inquinante dall’istante 0 per 10 anni, dopo di che l’uso dell’inquinante è stato interrotto. È interessante osservare come la presenza di inquinante in falda continui ad aumentare anche dopo l’interruzione del suo uso, e come solo dopo diversi anni il suo livello cominci a decrescere. Al di là del fatto che i numeri usati possano essere più o meno realistici e del fatto che il modello sia troppo generico per rappresentare bene un qualche particolare tipo di inquinante, esso ci fa comprendere bene l’effetto dei ritardi, che in maggiore o minore quantità sono comunque sempre presenti in situazioni del tipo che abbiamo illustrato. Tra l’altro la figura presenta un andamento molto simile a quello riportato con riferimento al caso del DCPa dagli autori precedentemente citati.

Un caso simile, sempre riportato dagli stessi autori, è quello che riguarda i PCB (PolyChlorinated Biphenyls). Si tratta di materiali chimici, stabili, oleosi, non infiammabili, usati principalmente per il raffreddamento di componenti elettriche, capacità e trasformatori. Dal 1929 sono state prodotte circa 2 milioni di tonnellate di PCB, il quale è stato in genere eliminato do-
Figura 2.21. Diffusione dell’inquinante

2.5.2 Inquinamento atmosferico ed effetto serra

Un caso che evidenzia bene come l’interagire di flussi e di livelli porti a ritardi è quello dell’effetto serra. Riportiamo nella figura 2.22 un modello semplificato dei rapporti fra ciclo del carbonio e riscaldamento globale.

I fenomeni connessi sono abbastanza complessi, ma possiamo cercare di
Figura 2.22. *Un modello semplificato del ciclo del carbonio e della temperatura globale*

delinearne gli elementi fondamentali in modo semplice. La temperatura sulla superficie terrestre - terra, strati inferiori dell’atmosfera e fascia superiore dei mari (la zona dei 50-100 metri in cui si concentra la vita marina) - è determinata principalmente dal bilancio fra le radiazioni solari (energia che entra per radiazione) e l’energia che viene radiata indietro nello spazio. La terra è una massa calda circondata da uno spazio freddo ed emette radiazioni la cui distribuzione di frequenza e intensità dipende dalla sua temperatura superficiale. Più calda è la terra maggiore è il flusso di energia che viene emessa per radiazione verso lo spazio: si crea un effetto di *feedback* negativo, per cui le radiazioni solari in arrivo scaldano la terra, facendone aumentare la temperatura superficiale, fino al punto in cui l’energia emessa per radiazione bilancia quella ricevuta; a questo punto la temperatura non cresce più.

La quantità di energia emessa verso lo spazio dipende pure dalla composizione dell’atmosfera. I cosiddetti *gas serra*, tra cui principalmente l’anidride carbonica (biossido di carbonio), assorbono una parte di questa energia. Quindi un aumento nella concentrazione dei gas serra fa aumentare la temperatura della terra fino a che essa non raggiunga un valore che permette di nuovo il bilanciamento tra energia in arrivo ed energia in uscita. Va osservato che i gas serra svolgono un ruolo fondamentale: sono essi che riducono le
Capitolo 2. La Dinamica dei Sistemi

radiazioni di quel che serve per mantenere una temperatura media di circa 15 °C, necessaria per la vita sulla terra. In assenza di gas serra la temperatura media superficiale sarebbe di circa -17 °C.

Diversi processi naturali di natura biochimica e geotermica hanno causato nel tempo fluttuazioni di concentrazione di anidride carbonica nell’atmosfera. Oggi le attività umane hanno raggiunto una scala tale da avere effetti particolarmente rilevanti: le emissioni di gas serra sono andate crescendo in modo esponenziale dall’inizio della rivoluzione industriale. Conseguentemente la concentrazione di questi gas nell’atmosfera è anch’essa cresciuta esponenzialmente. La concentrazione nell’atmosfera di CO₂, che era prima dell’era industriale di circa 280 ppm (parti per milione), è ora di 370 ppm e tende a crescere.

Attualmente c’è uno sbilancio nelle radiazioni di circa 2.4 w/m^2, cioè la radiazione solare in arrivo supera di questa quantità la radiazione emessa dalla terra. Da qui il continuo aumento della temperatura: secondo l’IPCC la temperatura media è cresciuta nel ventesimo secolo fra 0.4 ed 0.8 °C. Il riscaldamento è stato accompagnato, fra gli altri fenomeni, dal ritirarsi dei ghiacciai, dalla diminuzione dello spessore dei ghiacci artici, e da un aumento dell’ordine di 10-20 cm del livello dei mari.

Nel modello della figura 2.22, abbiamo utilizzato due livelli, uno per rappresentare la concentrazione di CO₂ nell’atmosfera e l’altro per rappresentare la temperatura. Abbiamo poi supposto l’esistenza di un effetto di ritardo esponenziale per il decadimento dell’anidride carbonica atmosferica, per cui, da un lato ci sono le emissioni industriali di CO₂ e dall’altra il suo decadimento, smorzato sulla base di una stima della sua vita media nell’atmosfera. Abbiamo assunto come base il livello di concentrazione preindustriale e come vita media 100 anni, per cui il decadimento avviene secondo la legge:

$$\text{Decadimento} = \frac{C_{CO_2} - C_{pi}}{100},$$

dove C_{CO_2} è la concentrazione di CO₂ e C_{pi} il suo livello preindustriale. Ciò, essendo di 100 anni il tempo medio di permanenza nell’atmosfera di una molecola di anidride carbonica, il numero medio di molecole che in media scompaiono ogni anno è approssimativamente un centesimo di quelle presenti.

14 L’IPCC (Intergovernmental Panel on Climate Change), un’agenzia promossa dall’Onu, afferma: La presente concentrazione di CO₂ non è mai stata superata negli ultimi 420.000 anni e molto probabilmente neppure negli ultimi 20 milioni di anni. L’attuale tasso di crescita non ha pari almeno negli ultimi 20.000 anni (IPCC, 2001)

15 Il livello preindustriale viene qui considerato come un dato, anche se è esso stesso il risultato di un equilibrio fra bioemissioni e decadimento nell’atmosfera.
2.5. Ritardi

in atmosfera16. Naturalmente qui abbiamo assunto l’anno come unità di tempo.

Abbiamo poi assunto che gli incrementi della temperatura di equilibrio rispetto alla temperatura media preindustriale siano crescenti con il rapporto fra la concentrazione di CO\(_2\) ed il suo valore preindustriale secondo una legge del tipo:

\[T(C_{CO_2}) = T_{pi} + K \ln \frac{C_{CO_2}}{C_{pi}}, \]

dove \(T(C_{CO_2}) \) è la temperatura di equilibrio in funzione della concentrazione di CO\(_2\), \(T_{pi} \) è il suo livello preindustriale e \(K \) è un coefficiente di proporzionalità (Fiddaman, 1997). Per temperatura di equilibrio intendiamo quella che, per dati livelli di concentrazione di CO\(_2\), consente di realizzare l’equilibrio fra radiazioni in entrata e radiazioni in uscita.

L’effettiva temperatura, indicata con il secondo livello del modello, cresce quando essa è più bassa di quella di equilibrio e decresce quando è più alta; anche qui però c’è un effetto di smorzamento e quindi un ritardo.

Si tratta di un modello che, come tutti i modelli, è solamente una approssimazione della realtà, in questo caso particolarmente semplificata. Tuttavia anche un modello così semplificato è in grado di darci delle informazioni, sia pure di tipo essenzialmente qualitativo. Ad esempio si è fatta una simulazione con il modello, mettendo in ingresso delle emissioni con un andamento simile a quello delle emissioni di CO\(_2\) degli ultimi 100 anni, e poi, in 20 anni, si sono portate le emissioni al livello di 100 anni fa. I risultati sono indicati in figura 2.23.

Si vede chiaramente come, malgrado le emissioni si riducano enormemente in un breve lasso di tempo, la diminuzione della quantità totale di CO\(_2\) nell’atmosfera avvenga lentamente, mentre la temperatura continua ad aumentare per oltre un secolo per poi cominciare a declinare molto lentamente, stabilizzandosi ad un livello notevolmente più alto di quello del momento in cui è stata presa la decisione di ridurre le emissioni.

Abbiamo poi provato a vedere cosa accade se, invece di ridurre al livello di 100 anni prima le emissioni, si riducono drasticamente a zero. I risultati sono quelli riportati in figura 2.24.

Si vede chiaramente come, malgrado le emissioni cessino in modo veloce, la diminuzione della quantità totale di CO\(_2\) nell’atmosfera avvenga lentamente, mentre la temperatura continua ad aumentare per diversi decenni e solo

16Il fatto di considerare qui non tutta la quantità di anidride carbonica presente, ma solamente la frazione dovuta alle emissioni industriali, \(C_{CO_2} - C_{pi} \), è dovuto al fatto che, per semplicità, abbiamo considerato la quantità di gas presente a regime in atmosfera a causa delle bioemissioni una costante, cioè una variabile esogena.
Capitolo 2. La Dinamica dei Sistemi

Figura 2.23. Effetto dei ritardi sulla temperatura globale: risultati della simulazione

do po più di un secolo ritorna ai valori che aveva nel momento in cui si era presa la decisione di azzerare le emissioni.

Per quanto il modello usato sia molto semplificato, i risultati ottenuti sono consistenti con quelli forniti dai ben più sofisticati modelli usati dall’I-PCC, che riportiamo in figura 2.25. In questo caso le emissioni sono state ridotte ad un livello sostenibile, in modo da garantire una stabilizzazione della temperatura. La stabilizzazione però, proprio per effetto dei ritardi, non avviene subito, ma solo dopo un rilevante lasso di tempo in cui la temperatura continua ad aumentare. Questo comporta una temperatura di equilibrio consistentemente più alta di quella esistente nel momento in cui è stata presa la decisione di ridurre le emissioni.

Il tenere in conto l’effetto dei ritardi nel modello è molto importante nel prendere decisioni: quando si deciderà di intervenire potrà essere troppo tardi! Questo è proprio quello che rischia di accadere se consideriamo che nella Conferenza di Kyoto del 1997, 38 paesi industrializzati si sono accordati a ridurre le emissioni a . . . circa il 95% dei livelli del 1990 entro il 2012. Anche se il trattato di Kyoto fosse realizzato completamente, le emissioni continuerebbero a superare la capacità di assorbimento e la concentrazione nell’atmosfera dei gas serra continuerebbe ad aumentare. E comunque la probabilità che esso venga effettivamente messo in pratica sono limitatissime dato che gli Usa non lo hanno ratificato e che l’unica azione che intendono portare avanti sembra sia quella di ridurre le emissioni per unità di prodotto, senza porre però limiti al volume totale delle attività economiche che producono emissioni di
2.6 Un problema di sostenibilità

Il giorno di Pasqua del 1722, l’esploratore olandese Jacob Roggeveen avvistò una piccola isola nel Pacifico, che battezzò isola di Pasqua. Si trattava di una terra desolata senza neanche un albero o un arbusto che superasse i 3 metri. Era abitata da poche migliaia di persone che vivevano di una agricoltura povera: banane, taro, patate dolci, canna da zucchero e gelso da carta; unico animale domestico era il pollo. La popolazione, di poche migliaia di persone (circa tremila), era divisa in clan in lotta fra di loro, con forme di cannibalismo. Anche la pesca era molto limitata; gli isolani infatti disponevano solamente di piccole canoe, non più lunghe di 3 metri, capaci di portare uno o due persone, realizzate con piccole assi tenute insieme con legature fatte con fibre e non a tenuta d’acqua. Potevano essere utilizzate solamente in acque molto vicine alla costa.

Ma quello che certamente più colpì i primi visitatori fu la differenza fra la povertà di vita della popolazione e i resti che rivelavano un società che nel passato era stata fiorente e complessa.

L’isola di Pasqua\footnote{Le informazioni sull’isola e sulla sua storia sono state prese principalmente dal libro di Jared Diamond “Collasso - Come le società scelgono di morire o vivere” (2005).} è un’isola vulcanica di forma triangolare, originatasi a...
Capitolo 2. La Dinamica dei Sistemi

Figura 2.25. *Inerzia della temperatura globale rispetto alle variazioni delle emissioni di anidride carbonica (IPCC 2001)*

partire da tre vulcani emersi dal mare. Ha una estensione di 171 chilometri quadrati ed una altitudine massima di 509 metri. Collocata in zona subtropicale ad una latitudine di 27° sud, ha un clima temperato, un suolo fertile per la sua origine vulcanica ed è molto ventosa. Il mare circostante è troppo freddo per lo sviluppo di barriere coralline e quindi anche povero di pesci e crostacei. Le risorse di acqua dolce sono scarse.

Presumibilmente l’isola fu colonizzata, intorno al 900 d.C18, da un gruppo proveniente dalla Polinesia su canoe, una ventina di persone. Vennero con semi ed animali. Questa piccola popolazione iniziale è cresciuta nel tempo, dando origine ad una società abbastanza ricca e complessa, e raggiungendo il suo massimo sviluppo probabilmente intorno al 1500, anno in cui aveva pre-

18Non tutti gli studiosi sono d’accordo con questa datazione: alcuni fanno risalire la colonizzazione a 400-500 anni prima.
2.6. Un problema di sostenibilità

sumibilmente raggiunto le 16,000 unità. È certo comunque che, al momento
dello sbarco di Roggeveen nel 1722, la popolazione si era significativamente
ridotta in numero e le sue condizioni di vita erano drasticamente peggiora-
te rispetto al tempo della sua massima espansione. Quest’ultimo punto è
testimoniato da diversi fatti. Innanzitutto i resti architettonici ed artistici
dimostrano un livello di ricchezza ed articolazione della società di cui non
c’era più traccia nel 1700. Inoltre l’analisi dei depositi di residui organici
prova come nel tempo l’alimentazione si fosse notevolmente impoverita.

La popolazione era divisa in 11-12 clan, all’interno dei quali esisteva una
netta divisione in classi. Questo è dimostrato dalle diverse tipologie di case
di cui rimangono i resti. L’isola è nota in tutto il mondo per i Moai, le enormi
statue in pietra che sono distribuite su tutta l’isola. Ci sono oltre 880 statue,
più della metà delle quali o ancora incomplete o abbandonate prima di essere
state collocate. Sono state costruite presumibilmente fra il 1000 ed il 1600.
Apparentemente i capi dei clan rivalleggiavano tra loro nel commissionare
statue sempre più grandi. La costruzione delle statue e delle piattaforme
dove venivano collocate comportava l’impiego di una grande quantità di mano
d’opera, e quindi la necessità di sfamare una grande quantità di individui con
un conseguente notevole dispendio di risorse.

Il caso dell’Isola di Pasqua ci permette di vedere attraverso un nuovo e
diverso esempio l’uso della dinamica dei sistemi e le sue potenzialità. Co-
struiremo un modello semplificato che ci permetterà di studiare l’andamento
nel tempo della popolazione e delle risorse ed anche di esplorare possibili
azioni che avrebbero potuto evitare il crollo che si è verificato. Il modello
che costruiremo, dovendo avere una funzione puramente didattica, includerà
solo alcuni degli elementi presenti nella situazione reale; indicheremo però le
direzioni verso cui muoversi per arricchire il modello rendendolo più realistico.

Cominciamo con il definire quello che nel linguaggio della dinamica dei
sistemi viene detto andamento di riferimento. Si tratta di una rappresenta-
zione a livello qualitativo di come ci aspettiamo che le variabili principali del
sistema evolvano nel tempo. In questo caso possiamo scegliere come variabili
principali la popolazione e la superficie boschiva. Per la prima sappiamo che
ha iniziato con una ventina di individui intorno al 900 d.C, per crescere fino a
circa 16.000 intorno al 1500 e che poi è andata decrescendo fino ai circa 3000
presenti nella prima metà del ’700. Per la seconda si può ragionevolmente
assumere che coprisse quasi tutta l’isola quando è iniziata la colonizzazione,
per decrescere poi fino a scomparire del tutto prima dell’arrivo della spedizio-
ne di Roggeveen. L’andamento di riferimento costituisce una guida ed anche

19Anche qui le valutazioni degli studiosi divergono; c’è chi non pensa che la popolazione
abbia mai superato le 6,000 unità e chi ritiene che si siano raggiunte le 30,000.
Capitolo 2. La Dinamica dei Sistemi

uno strumento di verifica nella prima fase della costruzione del modello.

È una scelta ragionevole quella di costruire il modello per passi. Prima si costruisce un modello molto semplificato in cui compaiono solo alcune delle variabili di interesse. Questo modello sarà poi man mano arricchito con l’introduzione di ulteriori variabili e relazioni, fino a quando non sia stato raggiunto quel compromesso fra esigenze di semplicità ed esigenze di realismo che si ritiene ragionevole rispetto agli scopi per cui il modello viene costruito. Nel nostro caso cominciamo con un semplice modello di crescita di una popolazione, trascurando la limitatezza delle risorse disponibili. Il modello è quello della figura 2.26, dove abbiamo scelto un valore iniziale della popolazione di 20 unità nell’anno 900 d.C., un tasso di natalità di 0.0312 ed un tasso di mortalità di 0.02\(^{20}\). Questo garantisce, con una vita media di circa 50 anni, una crescita che porti ad una popolazione di circa 16,000 unità nel 1500. L’andamento della crescita è tipicamente esponenziale ed è riportato in figura 2.27. Come si può vedere, in questo modello la popolazione cresce esponenzialmente fino a superare le 200,000 unità nella prima metà del 1700.

![Diagramma della crescita della popolazione](image)

Figura 2.26. *Il modello della crescita della popolazione in assenza di limitazione delle risorse*

Il passo successivo consiste nell’inserire le risorse, ed in particolare la terra coltivabile. Immaginiamo che inizialmente quasi tutta l’isola sia coperta da foresta, e che la popolazione, man mano che cresce, metta a coltivazione la terra di cui ha bisogno per la propria sopravvivenza disboscando. Naturalmente ci sono dei limiti: il fatto che la superficie dell’isola è limitata ed il fatto che un campo coltivato dopo un certo tempo si esaurisce soprattutto a causa dell’erosione, per cui diviene non più coltivabile, anche se poi potrà riacquistare di nuovo nel tempo la propria fertilità. I due processi, quello del-

\(^{20}\)Il numero di nascite per anno sarà allora dato da 0.0312 per il valore della popolazione nell’anno, mentre similmente il numero di morti sarà dato da 0.02 per il valore della popolazione. Si ha quindi una crescita netta annua del 1.12%.
2.6. Un problema di sostenibilità

Figura 2.27. Crescita della popolazione in assenza di limitazione delle risorse

l’esaurimento e quello della ricostituzione della fertilità, hanno tempi diversi. Nel caso dell’isola di Pasqua molto rilevante appare l’erosione eolica, essendo l’isola molto ventosa. Gli abitanti nel tempo hanno sviluppato tecniche di difesa basate sull’uso di massi, intorno ai campi, per formare barriere, e negli stessi campi, disposti ad intervalli regolari, per difendere il terreno\(^{21}\). Un terreno abbandonato per effetto dell’erosione può riacquistare nel tempo la sua fertilità recuperando i nutrienti necessari alla crescita delle piante. «Nel Pacifico questi nutrienti possono rinnovarsi principalmente in due modi: la caduta di ceneri immesse nell’atmosfera dalle esplosioni vulcaniche e di polveri originarie dell’Asia centrale» (Diamond, 2005). Per la sua posizione molto ad est, l’isola di Pasqua è poco soggetta a cadute sia di ceneri che di polveri; questo fa sì che il processo di ricostruzione della fertilità del suolo sia molto lento. Diamond riporta il caso di una zona abbandonata perché esaurita, poi dopo un centinaio di anni riusata di nuovo per l’agricoltura, e quindi dopo un certo tempo abbandonata di nuovo.

\(^{21}\)«Si accatastavano grandi massi come barriera di protezione per evitare che i frequenti e forti venti inaridissero le culture. Massi di minori dimensioni erano invece posti a protezione di orti, a volte pensili, in cui si coltivavano banane e che si usavano anche come vivai. Vaste aree di terreno venivano in parte ricoperte da sassi disposti a brevi intervalli l’uno dall’altro, in modo che le piante potessero crescervi in mezzo. […] I massi che ricoprono il suolo rendono il terreno più umido, riducendo l’evaporazione dovuta al sole e al vento e rompendo la crosta indurita del suolo, che lascerebbe scivolare via l’acqua senza tratternerla» (Diamond, 2005).
Figura 2.28. *Un modello che collega risorse e popolazione*

Nella figura 2.28 abbiamo riportato il modello ampliato in modo da tenere conto dei limiti delle risorse. Sono stati aggiunti tre livelli, la superficie delle foreste, la terra coltivata e quella non più coltivabile per esaurimento. Man mano che la popolazione ne ha bisogno per soddisfare le proprie esigenze alimentari nuova terra viene disboscata ed utilizzata per l’agricoltura. Allo stesso tempo una parte della terra coltivata si esaurisce e diventa non coltivabile, mentre una parte della terra non coltivabile riacquista la sua fertilità e ridiventa coltivabile. Per collegare risorse e popolazione, abbiamo immaginato che il tasso di natalità della popolazione sia una funzione della disponibilità di risorse: al diminuire della disponibilità di risorse diminuisce il tasso di natalità. Per quel che riguarda l’erosione del terreno abbiamo assunto che la velocità di erosione sia una funzione dell’*indice di forestazione*, dato dalla

\[
\text{Indice di forestazione} = \text{MIN}\{1, \frac{\text{Superficie foreste}}{\text{Terra coltivata} + \text{Terra non coltivata}}\}.
\]

Più basso è questo indice, cioè il rapporto fra superficie con foresta e superficie senza foresta, più aumenta la velocità di erosione.
2.6. Un problema di sostenibilità

Abbiamo prima considerato il caso di sfruttamento senza limiti della risorsa foresta. All’aumentare della popolazione aumenta la necessità di terra coltivabile, che viene ottenuta deforestando fino alla completa scomparsa della foresta. I risultati di questo primo modello sono riportati nella figura 2.29.

![Figure 2.29. Andamento nel caso di sfruttamento completo della foresta](image)

La crescita della popolazione si interrompe alla fine della prima metà del ‘500, quando inizia una fase di rapido declino. Nell’anno finale della simulazione, il 1750, si ha una popolazione di circa 2,600 individui, ed una estensione di terra coltivata di circa 335 ettari. L’andamento ottenuto è consistente con l’andamento di riferimento e con quello che noi sappiamo della popolazione dell’isola di Pasqua. Questo naturalmente non ci garantisce che il modello rappresenti fedelmente la situazione dell’isola; e in effetti il modello che abbiamo costruito è estremamente semplificato e può essere certamente arricchito e reso più realistico. Rinviamo per il momento la discussione su questo punto.

Una volta costruito il modello, possiamo cercare di individuare quali sono i punti in cui intervenire per migliorare l’andamento del sistema. Chiaramente un ruolo significativo ha la superficie a foresta che appare come un variabile fondamentale per le condizioni di vita nell’isola. Sono state allora fatte delle simulazioni immaginando che la popolazione dell’isola avesse deciso di limi-
tare la deforestazione, fissando un valore limite di foresta residua da non tagliare. Ponendo tale valore a 5,000 ettari abbiamo gli andamenti riportati nella figura 2.30.

![Figura 2.30. Andamento nel caso in cui si mantengano 5,000 ettari di foresta](image)

È interessante osservare come il mantenere una significativa superficie a foresta migliora consistentemente le condizioni di vita della popolazione, producendo un aumento della terra coltivata. Questo è dovuto ad una diminuzione della velocità di erosione del terreno. La popolazione che abbiamo a fine simulazione è di quasi 7,000 individui, mentre la terra coltivata arriva ad essere di circa 900 ettari. La limitazione nell’uso a fini agricoli delle foreste non porta ad una diminuzione della terra utilizzabile per l’agricoltura, ma piuttosto ad un suo aumento. Questi risultati evidenziano l’importanza ed il ruolo di politiche di conservazione forestale, ma soprattutto ci fanno vedere un interessante esempio di uso della dinamica dei sistemi per l’analisi di politiche ambientali.

Ci si può chiedere cosa succeda aumentando la superficie di foresta da salvaguardare. Nella figura 2.31 vengono confrontati gli andamenti della popolazione nel caso in cui tutta la foresta venga completamente disboscata ed in quelli in cui 5,000, 8,000 e 10,000 ettari di foresta rispettivamente vengono salvaguardati. Il salvaguardare una parte della foresta ha due effetti: da un lato si migliorano le condizioni del suolo e si riduce l’effetto erosione,
2.6. Un problema di sostenibilità

ma dall’altro si riduce la quantità di terra disponibile per l’agricoltura. È ragionevole pensare, e gli andamenti trovati lo confermano, che in una prima fase prevalga il primo effetto, con un miglioramento delle condizioni di vita della popolazione; mentre, oltre certi valori di superficie salvaguardata, il secondo effetto prende il sopravvento e le condizioni di vita cominciano a peggiorare. Il caso più favorevole fra quelli considerati è quello in cui si conservano 8,000 ettari di foresta; in questo caso la popolazione supera a regime le 22,000 unità.

![Gráfico 2.31. Andamento della popolazione nei casi in cui si mantengano 0, 5,000, 8,000 e 10,000 ettari di foresta](image)

Queste considerazioni sono confermate dalla figura 2.32, in cui sono confrontati gli andamenti delle superfici di terra coltivata nei 4 casi, esaurimento delle foreste e salvaguardia di 5,000, 8,000 e 10,000 ettari di foresta.

Abbiamo già osservato come il modello costruito costituisca una rappresentazione molto semplificata della realtà. Nel modello ad esempio non si tiene conto del fatto che il disboscamento nell’isola di Pasqua non è stato solo dovuto alla necessità di ottenere nuova terra da coltivare, ma anche a diversi altri motivi: il legno serviva come combustibile, per cremare i cadaveri, per costruire canoe e per le strutture necessarie al trasporto dei Moai. Questa può essere una delle direzioni lungo la quale arricchire il modello in modo da renderlo più realistico. Il fatto che i tronchi degli alberi più grossi
Capitolo 2. La Dinamica dei Sistemi

Figura 2.32. Andamento della superficie di terra coltivata nei casi in cui si mantengano 0, 5,000, 8,000 e 10,000 ettari di foresta

fossero molto adatti alla costruzione delle canoe, ha avuto un rilevante impatto sull’alimentazione. Il pesce infatti costituiva inizialmente una importante componente dell’alimentazione, e finito il legno è divenuto impossibile costruire le grandi canoe necessarie per pescare al largo, con un conseguente notevole impoverimento della dieta della popolazione.

Nel modello per semplicità abbiamo assunto costante il tasso di mortalità ed abbiamo fatto dipendere le variazioni del tasso di crescita della popolazione solamente da quelle del tasso di natalità. Si tratta di una semplificazione che in certi casi non crea problemi, ma che non ci permette ad esempio di tenere conto di aumenti del tasso di mortalità dovuti alla conflittualità. E quello della conflittualità è nel nostro caso un elemento importante. Per molto tempo i diversi clan avevano rivaleggiato nella costruzione dei Moai, quindi in modo essenzialmente pacifico, senza che ciò escludesse forme di integrazione economica e di collaborazione. Con la forte riduzione delle risorse e quindi con il peggioramento delle condizioni di vita, la conflittualità si era però radicalizzata, diventando cruenta. Questo certamente non poteva non avere un effetto sulla vita media delle popolazioni dell’isola. Anche questa è una direzione lungo la quale il modello può essere arricchito.

Va infine detto che i valori dei diversi parametri del modello e gli anda-
menti delle funzioni che sono state usate non sono se non in parte rappresentative della reale situazione dell’isola di Pasqua; in mancanza di dati precisi, abbiamo sopperito utilizzando il criterio della plausibilità. In effetti, più che costruire un effettivo modello della popolazione e delle risorse dell’isola di Pasqua, abbiamo usato le vicende di quest’isola come spunto per la costruzione di un modello che ci permetta di studiare una generica situazione tipo in cui una popolazione rischia l’estinzione a causa di un sovra-sfruttamento delle risorse a sua disposizione.
Capitolo 2. La Dinamica dei Sistemi
Capitolo 3

Cooperazione e competizione

L’essere umano è per sua natura più orientato all’altruismo oppure all’egoismo? È questo un argomento di discussione filosofica, ma che ha grandi implicazioni pratiche. Gran parte della teoria economica degli ultimi due secoli è stata costruita sull’idea che l’essere umano è essenzialmente egoista e che è ‘razionale’ il comportamento di chi cerca in ogni occasione di fare scelte che massimizzino il proprio bene, la propria soddisfazione\(^1\). Questa idea è basata su una idea essenzialmente pessimista che trova uno dei suoi principali sostenitori in Hobbes\(^2\).

Eppure nel comportamento effettivo degli individui osserviamo spesso ben altre motivazioni che la ricerca del proprio personale tornaconto. «Sotto quali condizioni la cooperazione può emergere in un mondo di egoistì senza una autorità centrale? - si chiede Axelrod (1984) - Questa domanda ha intrigato per tanto tempo. E per buone ragioni. Noi tutti sappiamo che le persone non sono angeli, e che tendono a preoccuparsi di se stessi e di ciò che è loro innanzitutto. Tuttavia noi sappiamo che la cooperazione avviene e che la nostra civiltà è basata su di essa. Ma in situazioni in cui ciascun individuo è incentivato ad essere egoista, come può mai svilupparsi la cooperazione?».

Axelrod prosegue osservando che la «risposta che ciascuno di noi dà a questa domanda ha conseguenze fondamentali su come noi pensiamo ed agiamo nelle nostre relazioni sociali, politiche ed economiche con gli altri».

Noi qui non pretendiamo di riuscire a rispondere alle domande che abbia-

\(^1\) «Il postulato della razionalità è il punto di partenza usuale nella teoria del comportamento del consumatore. Il consumatore si assume che sceglia fra le alternative a sua disposizione in modo che la soddisfazione che gli deriva dal consumare beni (nel senso più ampio del termine) sia la più grande possibile» (Henderson and Quandt, 1971)

\(^2\) Nel *Leviatano*, pubblicato nel 1651, il filosofo inglese Hobbes afferma che prima che esistessero i governi, lo stato di natura era caratterizzato da individui egoisti che competevano in modo così violento che la vita era “solitaria, povera, sgradevole, abbrutente e breve” (citato da Axelrod (1984)).
Capitolo 3. Cooperazione e competizione

mo posto. Se l’essere umano sia per sua natura egoista o altruista, oppure se e come possa svilupparsi la cooperazione, sono domande per rispondere alle quali si richiedono strumenti di analisi ben più complessi e sofisticati di quelli di cui possiamo qui fare uso e anche di quelli di cui dispone chi scrive. E comunque qualsiasi risposta sarebbe parziale e non definitiva. Molto più modestamente, cercheremo in questo capitolo di vedere come l’uso di semplici modelli matematici può aiutarci a gettare una sia pure limitata luce su alcuni aspetti della problematica che queste domande sottendono. Lo faremo ponendoci alcune domande, più semplici e limitate di quelle viste prima, domande legate all’utilità ed alla convenienza di un atteggiamento cooperativo: ancorché eticamente condannabile, non è sul piano individuale più conveniente sfruttare piuttosto che cooperare? È la competizione piuttosto che la cooperazione il modo migliore per lo sviluppo del benessere collettivo e per un’efficiente allocazione delle risorse?

Quest’ultima domanda è particolarmente importante, anche perché è ormai un luogo comune molto diffuso quello per cui è la competizione (concetto usually strettamente legato a quello di mercato) che garantisce lo sviluppo ed il benessere di una società. La competizione (insieme al mercato) sarebbe lo strumento fondamentale per una efficiente allocazione delle risorse, ed anche se per necessità sociali e di equità è necessario talvolta mettere dei limiti alla competizione, ciò viene visto comunque come un ostacolo al pieno sviluppo delle forze produttive e delle energie di cui la società dispone. Una società poco competitiva sarebbe destinata irrimediabilmente al declino.

L’argomento trattato è certamente importante ed attuale, ma il vero obiettivo di questo capitolo è illustrare un uso dei modelli un po’ diverso da quello visto finora. Nel capitolo precedente il modello era stato usato per rappresentare una realtà concreta e per studiarne il comportamento, principalmente allo scopo di individuare i modi con cui intervenire per modificare la realtà stessa al fine di realizzare degli obiettivi prefissati o comunque di
ottenere delle condizioni considerate preferibili a quelle esistenti. Qui il modello viene usato come uno strumento *euristico*, cioè di ricerca, all’interno di una argomentazione volta a valutare la plausibilità o l’implausibilità di una data tesi. Il modello e la sua analisi e discussione, una volta che siano state sviluppate, costituiscono una di quelle *policy narratives* di cui abbiamo parlato nell’introduzione. Si tratta, come abbiamo già detto, di storie con un loro inizio, sviluppo e conclusione, in cui viene rappresentata una situazione e le sue possibili conseguenze, al fine di affermare o eventualmente anche di negare una tesi che si considera di ‘senso comune’, cioè costituita da una sorta di ‘verità condivisa’, all’interno di una comunità, o ambiente culturale, scientifico o politico. L’utilizzo di modelli in questa accezione può risultare estremamente utile, ma anche non privo di rischi. In realtà nessuna conclusione definitiva può essere tratta da un modello. Ricordiamo che un modello per definizione è sempre ‘infele’ alla realtà che intende rappresentare, essendo comunque una sua rappresentazione molto semplificata. Per questo preferiamo considerare i modelli intesi come *policy narratives* non come strumenti per asserire o negare tesi, ma più semplicemente per suggerirne la plausibilità o l’implausibilità.

3.1 Un semplice modello di produzione e di scambio

Il termine che viene spesso usato per definire colui che sfrutta a proprio beneficio la relazione con uno o con un insieme di altri individui è quello di *parassita*. A livello di vita (vegetale e animale) sono numerosissime le specie che vivono come parassiti di altre specie. Si tratta di qualcosa che fa parte della vita e che non è soggetta a valutazioni di tipo etico. Passando però dalla vita vegetale e animale a quella umana, il termine parassita è usualmente caratterizzato da una forte connotazione etica negativa, ed è stato usato per criticare e condannare non solo singoli individui, ma intere categorie sociali, e quindi anche come strumento di analisi e di lotta politica.

Ad esempio «Karl Marx, che ha implicitamente definito il ruolo dell’imprenditore nel processo produttivo come un ruolo da parassita (la sua intera teoria del plusvalore è costruita intorno a questa idea), ha tentato di seguire l’evoluzione sociale di questo ruolo dall’artigiano indipendente al maestro artigiano che impiegava all’inizio apprendisti, e poi operai a giornata; e che successivamente si è trasformato nell’organizzatore dell’officina per abbandonare alla fine ogni partecipazione nel processo produttivo reale. Secondo
Marx, il capitalista non rende alcun valore sociale a fronte del profitto che ricava dalla proprietà» (Rapoport, 1960).

Per studiare gli effetti della cooperazione e del parassitismo, presentiamo un semplice modello di produzione e scambio ripreso da Rapoport (1960). È un modello che, come abbiamo anticipato, si distingue da molti degli altri modelli visti, i quali avevano la pretesa di rappresentare un aspetto, sia pure parziale, e comunque in modo molto imperfetto, della realtà. Questo modello non ha nulla di realistico; va inteso solamente come uno strumento euristico che ci aiuti a comprendere meglio la realtà, o rafforzando o mettendo in discussione le nostre precedenti convinzioni su un particolare argomento.

Immaginiamo una economia in cui ci siano solamente due individui, X ed Y, che producono beni diversi e scambiano una parte di ciò che producono. Possiamo immaginare che uno sia un panettiere e l’altro un ortolano: il primo dà all’altro una parte del pane che produce, ricevendone in cambio ortaggi, e tiene per il suo consumo personale il resto della sua produzione; analogamente avviene per il secondo. Per semplicità supponiamo che la frazione di produzione ceduta da entrambi sia la stessa: entrambi scambiano una frazione q di ciò che producono e ne traggono la rimanente frazione $p = 1 - q$. In questo modello i due produttori non possono scegliere il valore di q che assumiamo sia determinato da regole esterne, ad esempio dovute a consuetudini oppure leggi esplicite. L’unica cosa che essi possono controllare è la quantità del loro lavoro, cioè la quantità di bene che producono.

Introduciamo ora le funzioni di utilità dei due individui, cioè quelle funzioni che forniscono, in una qualche unità di misura, la soddisfazione che essi ricavano dai beni di cui dispongono, o perché prodotti o perché ottenuti dallo scambio. L’ipotesi usuale nei libri di testo di economia è che ciascuno operi in modo da massimizzare la propria funzione di utilità compatibilmente con le condizioni esterne in cui si trova. Questo è quello che viene chiamato comportamento razionale dell’*homo oeconomicus*. Noi per il momento accetteremo questa ipotesi.

Facciamo ora qualche ipotesi sulla funzione di utilità: la funzione cresce al crescere della quantità dei due beni ottenuti dall’individuo; quindi più l’individuo lavora maggiore è la quantità di bene di cui può disporre e di conseguenza maggiore è la sua utilità. È abbastanza naturale assumere che l’aumento di utilità dovuto all’incremento di una unità di prodotto dipenda dalla quantità di prodotto di cui già si dispone: se dispongo solamente di 1 kg di pane l’ottenere un ulteriore kg mi dà un aumento di soddisfazione (cioè del valore della funzione di utilità) molto maggiore di quello che ne avrei se

\[3\text{Cioè ad esempio, se il numero di kg di pane prodotti dal panettiere è } x = 100, \text{ e se è } q = 0.25, \text{ allora l’ortolano riceverà } qx = 25 \text{ kg di pane.}\]
3.1. Un semplice modello di produzione e di scambio

disponessi già di 20 kg di pane. Ciò l’utilità che viene ricavata dalla quantità di bene disponibile è una funzione che cresce con questa quantità ma che cresce sempre più lentamente man mano che questa quantità aumenta; tecnicamente si parla di una funzione caratterizzata da rendimenti decrescenti; un esempio di una funzione di questo tipo è riportato in figura 3.1.

Va però considerato anche che, se da un lato al crescere del lavoro che l’individuo compie aumenta la quantità di bene che riesce a produrre, dall’altro più lavora più aumenta la sua fatica e quindi si ha un effetto di decrescita dell’utilità. Il lavoro entra quindi nella funzione di utilità in due temini, uno positivo corrispondente alla quantità di beni disponibili, e l’altro negativo dovuto alla fatica che al lavoro si accompagna. Ma mentre il primo termine è caratterizzato, come abbiamo già visto, da rendimenti decrescenti, nel secondo questo fenomeno non si verifica: non c’è motivo di pensare che l’incremento di fatica per un’ora di lavoro in più diminuisca all’aumentare delle ore già lavorate.

Nel nostro modello, seguendo la scelta fatta da Rapoport, abbiamo usato le seguenti funzioni di utilità, la prima per X e la seconda per Y:

Semmai si potrebbe sostenere il contrario: la fatica cresce all’aumentare delle ore di lavoro, fino a diventare, oltre un certo livello, non più sopportabile. Si potrebbe usare una funzione crescente con rendimenti crescenti; tuttavia per semplicità seguendo Rapoport, abbiamo usato una funzione lineare crescente.

Figura 3.1. *Funzione caratterizzata da rendimenti decrescenti*
Capitolo 3. Cooperazione e competizione

Figura 3.2. La funzione di utilità

$$S_X(x, y) = \log(1 + px + qy) - \beta x,$$
$$S_Y(x, y) = \log(1 + qx + py) - \beta y.$$

(dove abbiamo indicato con x e con y le quantità prodotte da X e da Y rispettivamente.

Per il termine con rendimenti decrescenti è stata scelta una funzione logaritmica. Il logaritmo è proprio una funzione che ha valore 0 quando l’argomento è 1 (nel nostro caso quando $x = y = 0$, cioè quando non viene prodotto niente) e che cresce inizialmente rapidamente e poi sempre più lentamente. Il termine relativo alla fatica del lavoro è stato scelto lineare con un coefficiente di fatica, β, uguale per entrambi gli individui, che assumiamo sia ≤ 0.6. Ad esempio la $S_X(x, y)$ in funzione di x, avendo posto $y = 0.5$, $p = 0.7$, $q = 0.3$ e $\beta = 0.6$, è riportata in figura 3.2.

Vogliamo capire quale è il livello a cui si collocalerà la produzione dei due beni, considerando che ciascuno dei due produttori, sulla base delle ipotesi fatte, cercherà di massimizzare la propria utilità. Basterà a questo scopo la scelta per β di un valore maggiore renderebbe troppo faticoso il produrre quantità anche piccole e porterebbe entrambi i produttori a non produrre. Questo è la conseguenza dell’aver scelto per la porzione crescente della funzione di utilità una funzione logaritmica del tipo di quella delle 3.1 e 3.2.)
3.1. Un semplice modello di produzione e di scambio

massimizzare le due funzioni S_X e S_Y. È possibile dimostrare\(^6\) che perché si abbia il massimo dovranno essere soddisfatte le due uguaglianze:

$$px + qy = \frac{p}{\beta} - 1, \quad (3.3)$$
$$qx + py = \frac{p}{\beta} - 1. \quad (3.4)$$

La 3.3 è l’equazione della retta che contiene tutti i punti $\begin{pmatrix} x, y \end{pmatrix}$ tali che x è il livello ottimo di produzione per X data la decisione di Y di produrre la quantità y. Similmente la 3.4 è l’equazione della retta che contiene tutti i punti $\begin{pmatrix} x, y \end{pmatrix}$ tali che y è il livello ottimo di produzione per Y data la decisione di X di produrre la quantità x.

3.1.1 Equilibrio e ottimo sociale

Supponiamo di trovarci in un punto $\begin{pmatrix} x_0, y_0 \end{pmatrix}$, cioè in una situazione in cui il primo produttore produce la quantità x_0 ed il secondo la quantità y_0. Ciascuno dei due aggiusterà il proprio livello di produzione in funzione del livello di produzione dell’altro fino a che non venga raggiunta una situazione soddisfacente per entrambi, cioè un punto $\begin{pmatrix} x^*, y^* \end{pmatrix}$ in cui nessuno dei due può ulteriormente aumentare la propria funzione di utilità, cioè fino a raggiungere una situazione di equilibrio. Il punto $\begin{pmatrix} x^*, y^* \end{pmatrix}$ è caratterizzato dal fatto che se X volesse aumentare o diminuire la sua produzione, nell’ipotesi che Y non modifichi la sua, non migliorerebbe la sua situazione (cioè il valore della propria funzione di utilità); lo stesso vale per Y. Un equilibrio di questo tipo viene detto, nell’ambito della teoria matematica dei giochi, equilibrio di Nash, dal nome del matematico che lo ha definito; per una trattazione elementare dei principali concetti della teoria dei giochi rimandiamo a Lucchetti (2001).

Per capire meglio il risultato di questo processo di aggiustamento che porta all’equilibrio facciamo riferimento alla figura 3.3. In questa figura ogni punto del piano rappresenta un dato livello di produzione: il generico punto $\begin{pmatrix} x, y \end{pmatrix}$ rappresenta la situazione in cui X produce la quantità x del proprio prodotto, ed Y produce la quantità y del proprio. Abbiamo riportato poi le due rette di equazione rispettivamente 3.3 e 3.4; la prima indicata con L_X, e la seconda con L_Y. Se il punto $\begin{pmatrix} x, y \end{pmatrix}$ appartiene a L_X, allora siamo in una situazione in cui X non ha nessun motivo per cercare di modificare la propria produzione: per lui, dato il valore della produzione di Y, quello è un punto di ottimo. La stessa cosa si può dire per Y se il punto si trova sulla retta

\(^6\)Basta uguagliare a 0 la derivata di $S_X(x, y)$ rispetto ad x e la derivata di $S_Y(x, y)$ rispetto ad y, e risolvere il sistema di equazioni risultante.
Capitolo 3. Cooperazione e competizione

Il punto di incontro delle due rette è un punto di equilibrio: nessuno dei due produttori, agendo solamente sulla propria produzione, può migliorare la propria funzione di utilità. Osserviamo che abbiamo scelto il caso in cui questo punto si trova nell’ortante positivo: questo è in effetti l’unico caso di interesse; negli altri casi infatti avremmo che l’unica possibilità perché entrambi massimizzino la propria utilità sarebbe di avere una o entrambe le produzioni a livello negativo, il che è privo di senso. Vedremo fra poco che condizione perché l’intersezione delle rette sia all’interno dell’ortante positivo è che sia $p/\beta > 1$. Abbiamo inoltre assunto che sia $p > q$, cioè che la porzione che ciascuno cede sia minore di quella che trattiene. Dal punto di vista geometrico questo comporta che la retta relativa ad X abbia una pendenza maggiore della retta relativa a Y.

![Figura 3.3. Caso in cui è $p > q$](image)

Nella figura, per ciascuno dei settori in cui le rette dividono il piano, sono indicate le direzioni della variazione di produzione che farebbero X (orizzontale) ed Y (verticale) per avvicinarsi alla propria situazione di massima utilità. Ci si può facilmente rendere conto che, qualsiasi sia la situazione di partenza, quella finale è data dal punto (x^*, y^*), cioè dall’intersezione delle due rette. Si tratta di un punto di equilibrio stabile: infatti se per qualche motivo esterno il punto rappresentativo del livello di produzione dei due beni dovesse spostarsi, la dinamica interna del sistema (cioè l’ipotesi che ciascuno dei due produttori cerchi di massimizzare la propria utilità) lo riporta sull’intersezione delle rette.

Se risolviamo il sistema costituito dalle 3.3 e 3.4, otteniamo le coordinate

$\frac{px + qy}{\beta} = 1$
3.1. Un semplice modello di produzione e di scambio
del punto \((x^*, y^*)\), cioè:

\[x^* = y^* = \frac{p}{\beta} - 1. \]

Chiaramente la condizione perché il punto \((x^*, y^*)\) si trovi nell’ortante positivo è che sia, come abbiamo già anticipato, \(p/\beta > 1\).

Sostituendo i valori di \(x^*\) e di \(y^*\) nelle 3.1 e 3.2 si ottengono i valori dell’utilità per i due produttori nel punto di equilibrio:

\[S_X(x^*, y^*) = S_Y(x^*, y^*) = \log\left(\frac{p}{\beta}\right) - p + \beta. \]

Non è strano, vista la nostra ipotesi che i due produttori abbiano uguali funzioni di utilità e che ripartiscano il loro prodotto nello stesso modo, il fatto che il valore di utilità ottenuto nel punto di equilibrio sia lo stesso per entrambi. Osserviamo che questo risultato nasce dall’ipotesi che ciascuno cerchi di massimizzare la propria utilità, non curandosi di ciò che accade all’altro, cioè nell’ipotesi di un atteggiamento egoistico e non cooperativo da parte di ciascuno dei produttori.

Vediamo cosa accade se i produttori cambiano il proprio punto di vista e ciascuno di essi include anche l’utilità dell’altro come parte della propria. Supponiamo cioè che le funzioni di utilità 3.1 e 3.2 siano sostituite dalle seguenti funzioni di utilità generalizzate:

\begin{align*}
S_X^*(x, y) &= \alpha S_X(x, y) + (1-\alpha) S_Y(x, y), \quad (3.5) \\
S_Y^*(x, y) &= \alpha S_Y(x, y) + (1-\alpha) S_X(x, y), \quad (3.6)
\end{align*}

dove \(S_X(x, y)\) e \(S_Y(x, y)\) sono le vecchie funzioni di utilità, e \(\alpha\) è un numero compreso fra 0 ed 1. Abbiamo mantenuto l’ipotesi che le due funzioni di utilità siano uguali; potremmo però, a prezzo di una trattazione più complessa, assumere che i coefficienti con cui vengono pesate le singole utilità siano diversi per i due produttori, ad esempio usando un peso \(\alpha_1\) per il primo ed un peso \(\alpha_2\) per il secondo.

Chiaramente le 3.5 e 3.6 hanno come caso particolare le vecchie utilità del caso egoistico: basta porre \(\alpha = 1\). Supponiamo che i due produttori facciano propria un’etica completamente egualitaria, cioè poniamo \(\alpha = 0.5\). È possibile dimostrare che in questo caso il massimo dell’utilità per entrambi si ottiene in corrispondenza al punto \((\bar{x}, \bar{y})\) con

\[qx + py, \] da cui si ottiene che \(x = y\). Sostituendo poi nelle due equazioni si ottiene \(x = y = p/\beta - 1\).
Capitolo 3. Cooperazione e competizione

\[\bar{x} = \bar{y} = \frac{1}{\beta} - 1, \]

un valore di produzione cioè maggiore di quello ottenibile nel caso egoistico, e che tale punto è un punto di equilibrio stabile. Questo punto viene anche chiamato punto di ottimo sociale perché è anche il punto che massimizza l’utilità collettiva intesa come somma delle singole utilità.

Vediamo ora cosa significa questo livello di produzione in termini delle vecchie utilità. Sostituendo i valori ottenuti nelle 3.1 e 3.2 si ottiene:

\[S_X(\bar{x}, \bar{y}) = S_Y(\bar{x}, \bar{y}) = \log\left(\frac{1}{\beta}\right) - 1 + \beta. \]

Per capire se i due produttori hanno perso o guadagnato dal cambio di funzione di utilità possiamo calcolare la differenza fra \(S_X(\bar{x}, \bar{y}) \) e \(S_X(x^*, y^*) \):

\[S_X(\bar{x}, \bar{y}) - S_X(x^*, y^*) = \log\left(\frac{1}{\beta}\right) - 1 + \beta - \left(\log\left(\frac{p}{\beta}\right) - p + \beta\right) = \log\left(\frac{1}{p}\right) - (1 - p). \]

È possibile verificare che \(\log\left(\frac{1}{p}\right) \) è maggiore di \(1 - p \) per ogni valore di \(p \) nell’intervallo \((0, 1]\), eccetto che per \(p = 1 \), quando entrambi hanno valore 0. In figura 3.4 è stato riportato l’andamento della differenza tra i valori della funzione di utilità nei due punti \((\bar{x}, \bar{y}) \) e \((x^*, y^*) \) per valori di \(p \) compresi fra 0.5 ed 1, gli unici di interesse; infatti, essendo per ipotesi \(p > q \) e \(p + q = 1 \), si ha che \(p > 0.5 \). Ne segue che la cooperazione risulta sempre conveniente.

Ovviamente da quanto detto non si possono trarre conclusioni definitive né troppo forti. Il modello usato è estremamente semplice e certamente non realistico. Però, usato come strumento euristico, è in grado di fargli intuire la possibilità che la cooperazione possa essere non solo preferibile dal punto di vista etico, ma anche dal punto di vista economico, o almeno che l’idea opposta non sia necessariamente vera. Inoltre viene evidenziato come un’ottica miope, cioè in cui si guarda solamente al proprio ‘apparente’ interesse risulta portare a risultati peggiori di quelli che si potrebbero ottenere con una visione più ampia.

Degli spunti interessanti possono venire da un confronto con le idee di ‘situazione originaria’ e di ‘velo di ignoranza’ utilizzate da Rawls (1999). Il filosofo John Rawls, in una visione contrattualistica della giustizia, ipotizza che una definizione dei principi di equità su cui una società si possa basare debbano avvenire attraverso un accordo fra parti che si trovino in una situazione originaria in cui esse siano «situate dietro un velo di ignoranza. Le parti non sanno in che modo le alternative influiranno sul loro caso particolare, e sono quindi obbligate a valutare i principi soltanto in base a considerazioni...
3.1. Un semplice modello di produzione e di scambio

Figura 3.4. $S_X(\bar{x}, \bar{y}) - S_X(x^*, y^*)$

generali. [...] Nessuno conosce la sua posizione nella società né le sue doti naturali, e quindi nessuno si trova nella condizione di adattare i principi a proprio vantaggio» (Rawls, 1999, p. 125-128). In realtà la situazione in cui si ponga $\alpha = 0.5$ può essere pensata come la realizzazione di una sorta di velo di ignoranza: è come se le due parti decidessero i valori di produzione senza sapere chi alla fine sarà il fornaio e chi l’ortolano. In questa situazione di ignoranza, l’ipotesi di un comportamento ‘razionale’ nel senso della massimizzazione dell’utilità porta proprio a massimizzare una funzione aggregata che tenga conto in modo paritetico di entrambe le due funzioni di utilità.

3.1.2 Il caso del produttore e del parassita

Consideriamo ora il caso in cui sia $p < q$, cioè in cui la parte di prodotto trattentuta sia inferiore a quella scambiata. Questa è la situazione illustrata nella figura 3.5. Anche qui abbiamo indicato le direzioni in cui i due produttori tenderebbero a muoversi per migliorare la propria situazione in dipendenza dalla posizione in cui si trovano nel piano. In questo caso, in dipendenza dal punto di partenza, il sistema può tendere a (x^*, y^*), come nel caso precedente, ma anche ad uno dei due punti (x', y') e (x'', y''). È facile però vedere che qui l’intersezione delle due rette non è un punto di equilibrio stabile: bastano piccoli spostamenti perché il sistema si sposti verso uno degli altri due, che invece sono punti di equilibrio stabile.

I due punti stabili, (x', y') e (x'', y''), rappresentano situazioni in cui uno
solo dei produttori produce, mentre l’altro svolge un ruolo da parassita: non produce nulla ed usufruisce della quota di prodotto che l’altro gli fornisce. È interessante osservare che ciò avviene in una situazione in cui il produttore è obbligato a cedere una quantità di prodotto maggiore di quella che trattiene ($q > p$).

Confrontiamo ora i risultati in termini di utilità individuali che si ottengono in questo caso (esistenza di un parassita) con quelli che si ottengono adottando una funzione di utilità egualitaria. Supponiamo che Y sia il parassita, cioè che il punto di equilibrio sia (x', y'). Si ha:

$$x' = \frac{1 - \frac{1}{p}}{\beta}, \quad y' = 0,$$

e sostituendo nelle 3.1 e 3.2 si hanno i valori di utilità per X ed Y:

$$S_X(x', y') = \log \left(\frac{p}{\beta} \right) - 1 + \frac{\beta}{p},$$

$$S_Y(x', y') = \log \left(1 + \frac{q}{\beta} - \frac{q}{p} \right).$$

Calcolando la differenza tra le utilità che i due otterrebbero nel punto di ottimo sociale e quella ottenuta nel punto (x', y'), otteniamo:

$$S_X(\bar{x}, \bar{y}) - S_X(x', y') = \log \left(\frac{1}{p} \right) + \beta \left(1 - \frac{1}{p} \right), \quad (3.7)$$

$$S_Y(\bar{x}, \bar{y}) - S_Y(x', y') = \log p - \log(p\beta + qp - q\beta) - 1 + \beta. \quad (3.8)$$
È possibile verificare che \(S_X(\bar{x}, \bar{y}) - S_X(x', y') \) è sempre positivo eccetto che per \(p = 1 \) quando assume valore nullo, purché sia, come per altro abbiamo supposto, \(p > \beta \).

Invece, \(S_Y(\bar{x}, \bar{y}) - S_Y(x', y') \) può assumere sia valori negativi che positivi in dipendenza dal valore di \(\beta \); in particolare per \(\beta \) piccolo, cioè vicino a 0, i valori sono negativi, mentre sono invece positivi per \(\beta \) grande, cioè vicino a \(p^8 \).

Possiamo quindi concludere che per chi produce è sempre preferibile il punto di ottimo sociale, cioè il punto di equilibrio del caso di funzione di utilità egualitaria, mentre per il parassita c’è un guadagno a non produrre solo se \(\beta \) è abbastanza piccolo, cioè se colui che produce non è troppo ‘pigro’.

3.2 Il dilemma del prigioniero

Consideriamo la seguente situazione\(^9\). Due stazioni di rifornimento si trovano l’una accanto all’altra. Le chiameremo \(A \) e \(B \). Mediamente ogni settimana vendono circa 5000 litri di benzina, con un guadagno netto di 1000 euro, ciascuna. I prezzi vengono fissati all’inizio di ogni settimana e non possono essere modificati durante la settimana. Il proprietario della stazione di rifornimento \(A \), essendo in difficoltà economiche vorrebbe riuscire ad accrescere i propri guadagni. Calcola che riducendo di 5 centesimi di euro per litro il proprio prezzo riuscirebbe ad attrarre una buona parte della clientela dell’altra stazione, arrivando a vendere circa 8000 litri di benzina, con un guadagno di 1200 euro. Così facendo incrementerebbe di 200 euro i suoi ricavi. Quando sta per decidere di diminuire i prezzi, gli viene in mente che anche il suo concorrente può fare la stessa cosa. I due non sono da tempo in buoni rapporti e non si parlano, per cui non gli è possibile sapere cosa deciderà il concorrente.

Che fare allora? La situazione è ben rappresentata dalla seguente tabella:

<table>
<thead>
<tr>
<th>(A) :</th>
<th>Riduce il prezzo</th>
<th>Non riduce il prezzo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) :</td>
<td>\quad 750/750 \quad</td>
<td>\quad 1200/400 \quad</td>
</tr>
<tr>
<td></td>
<td>\quad 400/1200 \quad</td>
<td>\quad 1000/1000 \quad</td>
</tr>
</tbody>
</table>

Per ogni possibile scelta sono indicati rispettivamente i guadagni di \(A \) e di \(B \). Ad esempio se \(A \) sceglie di ridurre il prezzo e \(B \) lo mantiene inalterato.

\(^8\)Per valori di \(\beta \) molto vicini a \(p \), la 3.8 diviene approssimativamente uguale alla funzione \(\log(1/p) - 1 + p \), che abbiamo già visto essere sempre positiva. Per valori di \(\beta \) molto vicini allo 0, l’espressione diventa approssimativamente uguale a \(-\log q - 1 \), che, essendo \(p < q \) e quindi \(q > 1/2 \), è sempre negativa.

\(^9\)Questo esempio e molti degli sviluppi successivi sono ripresi da Mérő (2000).
Capitolo 3. Cooperazione e competizione

to, allora A venderà 8000 litri di benzina, guadagnando 1200 euro, mentre B venderà solamente 2000 litri, con utile unitario inalterato, guadagnando complessivamente 400 euro. Se invece entrambi riducono il prezzo, allora venderanno ciascuno lo stesso numero di litri di benzina, ma vedranno il proprio guadagno ridotto di un quarto. Questa è la tipica tabella di un gioco: A e B sono i giocatori; ciascuno dei due ha due possibili mosse e nella tabella sono indicati i guadagni per ciascuna possibile coppia di mosse.

Mettiamoci dal punto di vista di A e chiediamoci quale sia la migliore strategia che può seguire. Ci sono due possibilità, che B scelga di ridurre il prezzo o che decida di mantenerlo, e su questo A non ha nessun controllo. Nel primo caso, A, se decide di ridurre il prezzo, guadagna 750 euro, altrimenti ne guadagna solamente 400; la sua scelta migliore è allora quella di ridurre il prezzo. Nel secondo caso, A, se decide di ridurre il prezzo, guadagna 1200 euro, altrimenti ne guadagna 1000; anche in questo caso la sua scelta migliore è quella di ridurre il prezzo. Questa sarà allora una scelta ‘razionale’ per A. Possiamo vedere le cose anche da un altro punto di vista. A non sa cosa farà B, ma mettendosi in una ottica di prudenza, considera per ogni sua possibile scelta il caso peggiore, cioè assume che B faccia la scelta che è per lui la peggiore. Allora, se sceglie di ridurre il prezzo, nel caso peggiore guadagna solo 750 euro, mentre se sceglie di mantenere inalterato il prezzo, guadagna nel caso peggiore solo 400 euro. A allora decide di massimizzare il minimo guadagno e di scegliere la riduzione di prezzo; così facendo comunque si assicura un guadagno di 750 euro, ben di più dei 400 euro che rischia di guadagnare nel caso in cui decidesse di mantenere inalterato il prezzo. Così facendo A ha applicato una strategia classica studiata nella ‘Teoria dei giochi’, la cosiddetta strategia $MaxMin$, cioè massimizzare il minimo guadagno.

Un ragionamento che appare certamente corretto porterà A a scegliere di ridurre il prezzo. Per la simmetria della situazione B sarà portato a fare lo stesso. Chiaramente il risultato non è positivo per nessuno dei due: la scelta di mantenere inalterati i prezzi, cioè di cooperare, avrebbe permesso di mantenere un più alto livello di guadagno, 1000 euro per ciascuno.

Possiamo rappresentare questo gioco per mezzo di un albero delle decisioni, quale quello di figura 3.6. La radice corrisponde al giocatore A che ha di fronte a sé due possibili mosse, indicate con R (riduzione del prezzo) e NR (non riduzione). I nodi al secondo livello corrispondono alle scelte di B; anche lui ha due possibili scelte, ma l’esito finale (il primo numero corrisponde al guadagno di A ed il secondo a quello di B) dipenderà dalla scelta fatta prima da A. Qui è inessenziale il fatto che B sappia o no quale scelta ha fatto A; quello che è importante è che A non sappia a priori la scelta che farà B. Chiaramente A, assumendo che B faccia la scelta per lui più conveniente,
3.2. Il dilemma del prigioniero

Figura 3.6. L’albero delle decisioni per il gioco del dilemma del prigioniero

sarà spinto a scegliere di ridurre il prezzo; così si assicura, nel caso peggiore, un guadagno di 750, mentre non riducendo rischierebbe un guadagno di 400.

Quello che abbiamo presentato è un esempio del classico gioco noto come il “Dilemma del prigioniero”, che nella sua versione originale viene presentato più o meno come segue. Due criminali vengono catturati, ma mancano le prove per condannarli per il loro crimine principale; possono solo essere incolpati per infrazioni minori, come ad esempio porto di armi abusivo. Il pubblico ministro, li incontra separatamente e fa a ciascuno di loro questo discorso: “se confessi, in considerazione della tua collaborazione, verrai rilasciato e il tuo complice verrà condannato a 20 anni. Naturalmente questo accadrà a meno che anche il complice non confessi, nel qual caso la tua confessione non sarà più utile, e allora entrambi verrete condannati a 10 anni. Se nessuno dei due confesserà allora non potremo fare altro che condannarvi per il porto di armi abusivo, con una pena di 2 anni”. Anche qui abbiamo una situazione in cui la collaborazione porta ad un esito non ottimo, ma certamente accettabile, mentre la defezione di entrambi porta ad una considerevole condanna; quest’ultimo è il risultato che si finisce per ottenere se entrambi si comportano in modo ‘razionale’ applicando una strategia di tipo MaxMin.

3.2.1 Alcuni esempi

Quello del dilemma del prigioniero può apparire come uno dei tanti paradossi utilizzati in diversi campi del sapere (logica, filosofia, matematica, . . .) per evidenziare incongruenze logiche, interessanti ed intriganti dal punto di vi-
Capitolo 3. Cooperazione e competizione

sta della teoria, ma di nessuna o limitatissima rilevanza pratica. In realtà il dilemma del prigioniero è un modo astratto per descrivere moltissime situazioni reali di grandissimo impatto sulla vita quotidiana. Ne vedremo alcuni esempi in questo paragrafo.

Una corsa verso il basso

Il seguente passo, ripreso da un articolo apparso nel 1996 sulla rivista americana di politica internazionale *Current History*, descrive una situazione abbastanza frequente in questa epoca caratterizzata dalla cosiddetta globalizzazione neoliberista, e che rappresenta un concreto ed immediato esempio del dilemma del prigioniero.

«Negli Stati Uniti, l'aumentata mobilità del capitale attraverso le regioni geografiche ha innalzato il livello di competizione fra gli stati per attrarre e mantenere investimenti industriali. Questa crescita della competizione può essere vista sia nelle offerte di tagli fiscali di milioni di dollari e di incentivi alle grandi imprese in cambio di investimenti nello stato, sia nella proliferazione dei programmi di crediti fiscali per imprese alla ricerca di nuovi siti per le loro produzioni. Questi crediti fiscali alle imprese e gli altri incentivi finanziari hanno come effetto la perdita di miliardi di dollari di tasse ogni anno. La caduta nella raccolta delle tasse di impresa ha creato pressione sui governi statali che, nella ricerca di pareggiare i bilanci, hanno tagliato i servizi pubblici. Inoltre, con il declino delle tasse pagate dalle imprese è venuto uno spostamento del peso delle tasse sugli individui.

Le politiche competitive di incentivi alle imprese da parte degli stati hanno la naturale propensione ad espandersi. Appena uno stato introduce un nuovo taglio fiscale o un nuovo sussidio, gli altri stati si sentono obbligati ad espandere i loro pacchetti di incentivi; gli amministratori temono che altrimenti il loro stato rimarrebbe indietro nella corsa al mantenimento dei posti di lavoro esistenti ed alla canalizzazione verso le loro comunità di un capitale sempre più volatile. L'estrema competitizione fra gli stati in effetti premia lo spostamento delle aziende. La crescita degli incentivi può allora ulteriormente incoraggiare la stessa mobilità che aveva dato origine alla proliferazione di questi programmi competitivi.

Ironicamente, studi passati hanno mostrato che gli incentivi fiscali sono stati generalmente o inefficaci o relativamente ininfluenti nel determinare le decisioni delle imprese sulle localizzazioni. Uno studio suggerisce che questi programmi statali di incentivi sono ormai diventati così diffusi che praticamente si neutralizzano fra di loro nell’attrarre gli investimenti. Così la proliferazione nell’ultima decade
3.2. Il dilemma del prigioniero

di programmi di incentivi del tipo “frega il tuo vicino”10 non sembra abbia realmente generato significativi cambiamenti nella distribuzione della produzione fra gli stati. Per molti stati, il risultato finale dei tagli di tasse alle imprese e dei sussidi è stato presumibilmente una corsa verso il basso, con piccoli guadagni in occupazione, più bassi introiti fiscali, minori servizi pubblici e più alte tasse per gli abitanti>>(Epstein et al., 1996).

In questo articolo l’attenzione è soprattutto centrata sulla competizione fra gli stati Usa, ma simili fenomeni sono accaduti ed accadono in Europa e coinvolgono tasse, servizi sociali, pensioni e sanità. Nella speranza di migliorare la propria competitività o di attrarre maggiori investimenti esteri, gli stati si impegnano in una corsa verso il basso che, alla fine, porterà ad una situazione in cui la competitività relativa non è sostanzialmente cambiata mentre le condizioni di vita ed il benessere delle popolazioni sarà sostanzialmente peggiorato. Purtroppo, come nel dilemma del prigioniero, è impossibile per il singolo stato resistere a questo circolo vizioso perché ne risulterebbe completamente schiacciato.

Il conflitto israelo-palestinese

Anche all’interno del conflitto israelo-palestinese è possibile individuare la struttura del dilemma del prigioniero, anche se a prima vista la cosa non sembra così ovvia. Paradossalmente c’è in Israele una maggioranza della popolazione che si dichiara disposta a lasciare i territori palestinesi, anche con lo smantellamento degli insediamenti, in cambio della pace, ma c’è anche una maggioranza degli israeliani che non crede che la pace sia possibile, cioè che il ritiro dai territori occupati porterebbe realmente alla pace. Questo porta al favore con cui l’opinione pubblica israeliana vede la costruzione del muro di separazione fra il territorio di Israele e le aree in cui si trovano insediamenti ebraici da un lato e le aree a forte densità abitativa palestinese. Si tratta di un muro che toglie ulteriori terre ai palestinesi e che certamente peggiora la vita della popolazione palestinesi. La sua stessa costruzione rappresenta un forte ostacolo al raggiungimento di un accordo di pace che possa essere accettabile alla maggioranza dei palestinesi.

Dove sta qui la struttura del dilemma del prigioniero? Semplificando la situazione, possiamo immaginare che ci siano da parte israeliana due opzioni, che chiameremo collaborazione e non collaborazione. Ad esse, similmente, la

10In questo modo, forse poco elegante, ma certamente efficace, abbiamo cercato di rendere l’espressione idiomatica inglese “beggar thy neighbor”.

Capitolo 3. Cooperazione e competizione

parte palestinese può rispondere con la collaborazione o con la non collaborazione. Chiaramente qui, differentemente da ciò che accade nel classico dilemma del prigioniero, non c’è simmetria e collaborazione e non collaborazione hanno significati molto diversi per le due parti. La situazione può essere schematicamente rappresentata nel modo seguente.

1. **Collaborazione** da parte di Israele: ritiro completo dai territori occupati e distruzione del muro. A questo da parte palestinese si può rispondere in due modi.

 (a) **Collaborazione**: la componente palestinese disponibile alla pace prende il sopravvento aiutata da un diffuso consenso dovuto al miglioramento della condizione economica della popolazione. Si stabiliscono le condizioni favorevoli alla convivenza delle due popolazioni. Questo porta, dopo un periodo di transitorio a vantaggi sia economici che di sicurezza per entrambe le popolazioni.

 (b) **Non collaborazione**: la componente estremista della popolazione palestinese non si indebolisce, anzi si rafforza, con conseguenze drammatiche per la popolazione israeliana.

2. **Non collaborazione** da parte di Israele: viene completato il muro e mantenuti gli insediamenti con il relativo controllo militare della popolazione palestinese. Anche in questo caso da parte palestinese si può rispondere in due modi.

 (a) **Collaborazione**: l’autorità palestinese riesce ad imporre il suo controllo sulle componenti estremistiche, limitando o bloccando completamente le forme di resistenza di tipo terroristico. Questo garantirebbe uno status quo, molto svantaggioso per i palestinesi, ma che permetterebbe ad Israele un recupero economico e buone condizioni di sicurezza.

 (b) **Non collaborazione**: la componente estremista della popolazione palestinese viene ulteriormente rafforzata, guadagnando più ampi consensi fra la popolazione palestinese, con il relativo aumento delle azioni terroristiche, della resistenza armata e della insicurezza in Israele. La situazione economica di entrambe le parti ne risentirebbe.

Chiaramente il risultato 2(a), cioè non collaborazione da parte di israeli e collaborazione da parte palestinese, è quello che apparentemente dà i maggiori vantaggi ad Israele. È interessante osservare come diversi commentatori, anche israeliani, hanno individuato questo come il vero obiettivo della
politica israeliana anche nei momenti di maggiore apertura verso il dialogo e la pace con la controparte palestinese. Purtroppo come nel caso del dilemma del prigioniero il risultato che finisce per essere più probabile è quello della reciproca non collaborazione, la 2(b) in questo caso. Si tratta proprio della situazione che ha avuto la sua fase più evidente negli anni successivi alla seconda metà del 2000; una situazione in cui entrambe le parti pagano un alto prezzo in termini economici ed in termini di sicurezza.

Va osservato che, mentre nel dilemma del prigioniero ‘da tavolino’ le scelte delle due parti producono effetti immediati e netti, qui gli effetti non possono essere né immediati né netti: ad esempio nel caso 2(a), ad una politica di collaborazione israeliana è plausibile pensare che si possa innescare un processo che porti in un certo tempo alla situazione di piena collaborazione palestinese (a). Durante questa fase ci potranno essere attentati ed episodi anche gravi di violenza (ricordiamo le considerazioni fatte nel paragrafo 1.3.2). Una volta raggiunta poi una situazione di collaborazione reciproca, bisognerà sempre avere chiaro che si tratta di una situazione di equilibrio che può essere disturbata da momenti di tensione ed anche di violenza. Tuttavia un chiaro impegno alla collaborazione renderà l’equilibrio stabile e gli spostamenti da esso temporanei.

Una sfida all’ultimo albero

Nel paragrafo 2.6 abbiamo trattato della vicenda dell’isola di Pasqua e della dinamica che ha portato la popolazione ad una sorta di ‘suicidio ecologico’, con la conseguente scomparsa totale degli alberi. Uno dei fattori che ha presumibilmente più giocato in questo ‘suicidio’ è stato quello della conflittualità fra i diversi clan in cui era divisa la popolazione. In una situazione cooperativa è certamente più facile una gestione razionale delle risorse. Come abbiamo visto sarebbe bastato decidere di preservare una parte della foresta realizzando un disboscamento compatibile con la capacità di riproduzione degli alberi per garantire buone condizioni di vita per tutta la popolazione. Nel nostro caso, per quello che si può ricavare dalle ricerche effettuate (Diamond, 2005), la popolazione era divisa in clan fra di loro in competizione, e ciascun clan controllava una porzione del territorio dell’isola. La competizione, inizialmente pacifica, con l’esaurirsi delle risorse, è diventata sempre più violenta.

Noi in realtà non sappiamo quali dinamiche si siano sviluppate quando gli abitanti dell’isola hanno cominciato a prendere coscienza del fatto che gli alberi stavano irrimediabilmente per scomparire, né come si sia arrivati alla decisione di tagliare l’ultimo albero. Forse non siamo molto lontani dal vero nell’immaginare che si sia trattato di un processo simile a quello che
Capitolo 3. Cooperazione e competizione

nel gioco del dilemma del prigioniero porta ad un equilibrio di Nash. Pur coscienti del fatto che la realtà è sempre molto più articolata e complessa di qualsiasi modello, possiamo tuttavia cercare di costruire un semplice modello che ci permetta di evidenziare alcuni aspetti di questo processo.

Immaginiamo che i clan siano due soli, in conflitto armato fra loro, e che si sia giunti ad una situazione in cui ciascuno nel proprio territorio abbia 30 alberi. Poiché si tratta di alberi che maturano riproducendosi in circa 30 anni, possiamo pensare che ciascuno dei clan, tagliando un albero l’anno, potrebbe mantenere nel tempo il proprio patrimonio boschivo\(^1\). Un numero maggiore di alberi tagliati porterebbe in breve alla loro estinzione. Possiamo immaginare i due clan come dei giocatori in un gioco in cui ciascuno ha davanti a sé due possibili mosse: (1) tagliare in media un albero all’anno\(^2\); (2) tagliare tutti gli alberi subito, o comunque nel giro di pochi anni. Analizziamo più a fondo questa seconda opzione: un clan che abbia esaurito i propri alberi sarà tentato dal fare incursioni nel territorio del clan avversario per appropriarsi dei suoi alberi. In fin dei conti la motivazione principale della conflittualità è proprio la necessità di assicurarsi il possesso di risorse che sono scarce e necessarie alla sopravvivenza. Possiamo allora immaginare che se uno dei clan decidesse per una politica conservativa (mossa n.1) e l’altro per il taglio degli alberi (mossa n.2), allora quest’ultimo, dopo un po’, cercherebbe di fare incursioni nel territorio dell’altro per appropriarsi dei suoi alberi. Possiamo allora rappresentare la situazione per mezzo della seguente tabella:

<table>
<thead>
<tr>
<th>Clan 2:</th>
<th>Non taglia</th>
<th>Taglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non taglia</td>
<td>40/40</td>
<td>15/45</td>
</tr>
<tr>
<td>Taglia</td>
<td>45/15</td>
<td>30/30</td>
</tr>
</tbody>
</table>

Per la scelta dei valori da assegnare ai guadagni dei due giocatori abbiamo assunto che nel caso in cui entrambi decidessero di tagliare, allora il guadagno sia pari al numero di alberi tagliati, cioè 30. Se entrambi decidessero una politica conservativa, avrebbero invece un guadagno di 40. Questo corrisponde a valutare il beneficio degli alberi tagliati nel futuro con un tasso di sconto di

\(^{11}\) Chiaramente l’esempio ha solo un valore didattico. Un numero così basso di alberi non garantisce la sostenibilità. Comunque il senso del modello non cambierebbe se gli alberi invece che essere 30 fossero 300. Similmente hanno solamente valore didattico i valori che abbiamo scelto per la matrice del gioco.

\(^{12}\) Ovviamente è possibile, ad esempio, che si taglino 2 alberi un anno e poi non si tagli nessun albero l’anno successivo.
3.2. Il dilemma del prigioniero

circa il 2.5\%13. Se invece uno taglia e l’altro segue una politica conservativa, allora assumiamo che chi taglia, una volta esauriti i propri alberi, si riesca ad appropriare di una metà circa degli alberi dell’altro, con incursioni nel suo territorio. All'altro clan non resterebbe allora che tagliare i propri alberi prima che vengano tutti rubati. Dall’analisi della tabella si ha che la scelta per entrambi di tagliare gli alberi individua l’unico equilibrio di Nash.

Per quanto semplificato e didattico sia, l’esempio che abbiamo illustrato ci può fare intuire qualcosa sulle dinamiche che hanno portato alla completa estinzione della foresta sull’isola di Pasqua.

3.2.2 La dinamica della cooperazione

Il dilemma del prigioniero nella sua versione originale è un gioco ad un solo passo: i due giocatori decidono di cooperare o non cooperare e questo conclude il gioco. In realtà in molti casi ci si trova di fronte alla possibilità di ripetere più volte il gioco. Ad esempio il proprietario della stazione di servizio del primo esempio dovrà fissare ogni settimana i suoi prezzi, così come dovrà fare il suo concorrente. Nel farlo ciascuno dei due terrà conto del passato ed eventualmente dell’atteggiamento cooperativo o competitivo dimostrato dal concorrente. Si possono allora creare delle dinamiche che possono portare alla cooperazione o alla competizione.

Queste dinamiche sono state studiate dal politologo Axelrod nel suo *The Evolution of Cooperation* (Axelrod, 1984). Proprio utilizzando il gioco del dilemma del prigioniero nella sua versione ripetuta, Axelrod ha cercato di studiare le dinamiche della cooperazione, cioè come possano nascere comportamenti cooperativi in situazioni in cui gli individui agiscono perseguendo i propri interessi. Axelrod ha osservato che se in un gioco con una sola occasione, oppure anche con un numero di occasioni finito e noto in anticipo, non c’è un incentivo alla cooperazione (abbiamo già visto prima che la scelta ‘razionale’ sarebbe quella di non cooperare), le cose cambiano nel caso che il gioco venga ripetuto un numero infinito di volte, oppure semplicemente che venga ripetuto più volte, senza però che i giocatori sappiano in anticipo quale sarà l’ultima mossa. In questo caso possono emergere delle dinamiche che portano alla cooperazione.

Come già ricordato all’inizio del capitolo, obiettivo degli studi di Axelrod era cercare di capire “sotto quali condizioni la cooperazione possa emergere in un mondo di egoisti in assenza di una autorità centrale”. Egli infatti aveva osservato come l’esistenza di situazioni di cooperazione ‘spontanea’,

13Per una definizione di tasso di sconto rimandiamo al paragrafo 5.1.1.
Capitolo 3. Cooperazione e competizione

ciò senza la presenza di una autorità esterna che la imponesse, fosse una esperienza abbastanza comune.

Axelrod fece un esperimento: invitò un certo numero di ricercatori a presentare strategie per il dilemma del prigioniero ripetuto. Queste strategie sarebbero state confrontate tra di loro in una sorta di torneo: ciascuna avrebbe giocato una sequenza di 200 iterazioni del gioco del dilemma del prigioniero con ciascuna delle altre ed alla fine si sarebbe visto quale aveva ottenuto il maggior punteggio; i punteggi erano quelli indicati nella seguente tabella:

<table>
<thead>
<tr>
<th>Strategia 2</th>
<th>coopera</th>
<th>compete</th>
</tr>
</thead>
<tbody>
<tr>
<td>coopera</td>
<td>3 / 3</td>
<td>0 / 5</td>
</tr>
<tr>
<td>compete</td>
<td>5 / 0</td>
<td>1 / 1</td>
</tr>
</tbody>
</table>

Alla competizione parteciparono 15 strategie, alcune molto semplici, altre notevolmente sofisticate. Alla fine risultò vincitrice la strategia proposta da Anatol Rapoport, la più semplice di tutte. Questa strategia, chiamata da Rapoport “Tit for tat” (TFT), che potrebbe tradursi come “occhio per occhio, dente per dente”, è descritta dalle seguenti due regole:

1. Alla prima iterazione coopera;

2. Ad ognuna delle iterazioni successive copia la mossa fatta dal tuo avversario nell’iterazione precedente.

Successivamente, in un secondo esperimento cui parteciparono altre strategie, di nuovo la TFT si dimostrò la migliore.

La conclusione di Axelrod fu che in effetti comportamenti cooperativi possono emergere e mantenersi anche fra individui egoisti, purché si tratti di individui che vivano in un contesto sociale in cui ci siano più occasioni di incontro, cioè in situazioni in cui la probabilità che due individui si incontrino di nuovo sia sufficientemente grande. Importante nello sviluppo della cooperazione, secondo Axelrod, è anche la reciprocità.

Nell’analizzare i risultati Axelrod cercò anche di individuare le caratteristiche comuni alle strategie che avevano prodotto nei suoi esperimenti i migliori risultati, e scopri che due di queste caratteristiche erano sempre presenti nelle strategie che avevano ottenuto i punteggi maggiori: la gentilezza e l’indulgenza. La gentilezza può essere definita dalla formula “non avviare mai la competizione per primo”, mentre l’indulgenza è quella caratteristica per cui, anche in presenza di una mossa non cooperativa dell’avversario, si è disposti a ritornare alla cooperazione purché anche l’altro lo faccia. Chiaramente la strategia TFT è contemporaneamente gentile ed indulgente.
3.2.3 Alcuni esempi di cooperazione

Vivi e lascia vivere

Un interessante esempio concreto riportato da Axelrod è il caso dell’atteggiamento di “vivi e lascia vivere” emerso nella guerra di posizione propria del primo conflitto mondiale. In quel caso i soldati nelle trincee opposte raggiungevano taciti accordi di evitare di sparare per uccidersi: i soldati di una parte evitavano di farlo se anche gli altri della parte opposta si comportavano nello stesso modo. Alla radice c’era la staticità della guerra che faceva sì che le stesse unità si trovassero per lunghi periodi di tempo le une di fronte alle altre. Siamo quindi in una situazione analoga alla versione con ripetizione del gioco del dilemma del prigioniero. L’esempio è interessante proprio perché fa riferimento ad una situazione caratterizzata da inimicizia e guerra fra le due parti, e quindi molto lontana, almeno in principio, da atteggiamenti di cooperazione. Quindi forme di cooperazione basate sulla reciprocità si possono sviluppare anche fra antagonisti.

Lo spinarello cooperativo

Gli spinarelli sono pesci piccoli che vivono in branco. Cosa fanno quando si avvicina un pesce grosso che potrebbe essere aggressivo? La soluzione più semplice sarebbe fuggire, ma così facendo dovrebbero passare quasi tutta la loro vita fuggendo, il che non sarebbe sensato. Quello che invece accade è che un gruppetto di pesci si stacca dal branco e, in avanscoperta, si avvicina al pesce grosso cercando di capirne le intenzioni. Gli spinarelli esploratori nuotano verso il pesce grosso, si fermano, poi ripartono fino a che non gli arrivano vicini e gli girano attorno. Se il pesce grosso non reagisce allora vuol dire che non ci sono pericoli per il branco; se invece uno spinarello viene catturato, allora gli altri fuggono ed avvisano il branco del pericolo.

Il dilemma del prigioniero si pone per il gruppo in avanscoperta. Se uno o due spinarelli del gruppo fuggono, cioè non cooperano, non ci sono problemi, ma se lo fanno tutti, allora certamente essi in quel momento si salvano, ma il danno per il branco potrebbe essere grandissimo se il pesce risultasse aggressivo. Se invece tutti cooperano, il danno, nella peggiore delle ipotesi, è limitato: uno o due spinarelli vengono catturati e gli altri si salvano.

In effetti degli studi fatti dall’etologo tedesco Manfred Milinski e ripartiti da Mérő (2000) hanno dimostrato come gli spinarelli seguano nel caso descritto una strategia cooperativa che ha grande somiglianza col TFT, e che in alcuni casi continuino a tenere atteggiamenti cooperativi anche in presenza di defezioni dei compagni.
3.2.4 La regola d’oro

È interessante osservare che le caratteristiche che abbiamo visto proprie delle strategie più efficaci, cioè la gentilezza e l’indulgenza, richiamano uno dei più antichi principi etici, che ritroviamo nella filosofia greca ed in quella orientale, e che nel Vangelo di Matteo (7, 12) viene così formulato: “Tutto quanto volete che gli uomini facciano a voi, fatelo anche voi a loro”. È quella che viene spesso chiamata la regola d’oro.

Abbiamo già visto nel paragrafo 3.2 come, nel caso del dilemma del prigioniero non ripetuto, l’applicazione di semplici ragionamenti logici porti al comportamento di non cooperazione e quindi ad un danno per entrambi i giocatori. Vediamo ora cosa accade nel caso che entrambi i giocatori decidano di fare propria la regola d’oro. Questo in pratica comporta che essi vedano il guadagno dell’altro come il proprio obiettivo. Per loro quindi la tabella del gioco cambia e, ad esempio, quella che abbiamo già visto per il caso delle due stazioni di servizio, diviene:

<table>
<thead>
<tr>
<th></th>
<th>Riduce il prezzo</th>
<th>Non riduce il prezzo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riduce il prezzo</td>
<td>750/750</td>
<td>1200/400</td>
</tr>
<tr>
<td>Non Riduce il prezzo</td>
<td>400/1200</td>
<td>1000/1000</td>
</tr>
</tbody>
</table>

I numeri nelle caselle sono stati qui invertiti di posizione perché ora A assume come proprio il guadagno di B e viceversa. Ripetiamo il ragionamento già fatto nel paragrafo 3.2 a questa nuova tabella. Mettiamoci dal punto di vista di A e chiediamoci quale sia la migliore strategia che può seguire. Ci sono due possibilità, che B scelga di ridurre il prezzo o che decida di mantenerlo, e su questo A non ha nessun controllo. Nel primo caso, A, se decide di ridurre il prezzo, guadagna 750 euro, altrimenti ne guadagna 1200 (cioè li guadagna B, ma questa è ora l’ottica di A, cioè massimizzare il guadagno di B); la sua scelta migliore è allora quella di non ridurre il prezzo. Nel secondo caso, A, se decide di ridurre il prezzo, guadagna 400 euro, altrimenti ne guadagna 1000; anche in questo caso la sua scelta migliore è quella di non ridurre il prezzo. Questa sarà allora una scelta ‘razionale’ per A. Ciò al contrario di quanto successo prima, l’avere cambiato la propria prospettiva ha portato alla cooperazione e quindi ad un guadagno per entrambi, infatti anche B farà lo stesso ragionamento.

Il risultato ottenuto è in accordo con quanto visto nel paragrafo 3.1.1: lì, nel caso del semplice modello dei due produttori, l’assunzione dell’utilità dell’altro all’interno della funzione di utilità di ciascuno dei produttori portava
ad una situazione di equilibrio migliore di quella ottenuta quando ciascuno dei due cercava di massimizzare solamente la propria utilità. Ovvero il comportamento egoistico non è detto che sia il più ‘razionale’.

3.3 La tragedia dei Commons

Quello che presentiamo in questo paragrafo è un altro di quei modelli che sono nati con lo scopo di definire una semplice situazione tipo e di studiarne le dinamiche, in modo da ottenere delle indicazioni utili a guidarci nell’affrontare situazioni e problemi reali. Il modello è stato proposto da Garret Hardin nell’articolo “The Tragedy of the Commons” pubblicato sulla rivista Science nel 1968 (Hardin, 1968). Qui il termine tragedia è inteso non tanto per evocare una situazione drammatica, dolorosa o portatrice di infelicità, ma piuttosto per evocare il senso di inevitabilità di un destino da cui non si può sfuggire. Il termine commons, che non tradurremo, fa riferimento a risorse il cui uso è condiviso da un insieme di persone, da una comunità, da un insieme di stati, senza che ci siano vincoli di proprietà individuale ed esclusiva. Questa può essere la situazione di una spiaggia libera, della fonte di un villaggio, di un pascolo in terreni di pertinenza di una comunità, delle risorse ittiche nel mare aperto,

La tesi sostanzialmente pessimistica di Hardin è che in una situazione in cui ciascuno degli utenti di una data risorsa comune è libero di usarla, allora lo farà cercando di massimizzare il suo beneficio, e questo inevitabilmente porterà alla distruzione della risorsa stessa. Le uniche alternative sono, per Hardin, o il socialismo con il suo controllo autoritario delle risorse oppure la privatizzazione delle risorse nel sistema di libero mercato.

Vediamo ora il modello così come descritto da Hardin. Immaginiamo un pascolo comune utilizzato da un insieme di pastori. Il singolo pastore cerca di massimizzare il suo guadagno e quindi si chiede quale sia l’utilità per lui di aumentare di una unità il suo gregge. Questa utilità contiene due componenti, una positiva ed una negativa:

- La componente positiva è funzione diretta dell’animale in più. Il pastore guadagna dalla vendita degli animali una volta che siano cresciuti, quindi prendendo come unità di misura del guadagno il valore di un singolo animale, possiamo dire che la componente positiva dell’utilità è per lui pari a +1.

- La componente negativa dipende dal fatto che l’aggiunta di un ulteriore animale comporta un maggiore consumo della risorsa comune e quindi un suo impoverimento. Ma questo effetto è ripartito fra tutti i pastori
Capitolo 3. Cooperazione e competizione

che utilizzano il pascolo e quindi lui ne risentirà solamente per una piccola frazione.

La conclusione finale di questo pastore ‘razionale’ è che gli conviene aumentare di una unità il proprio gregge. Ma perché solamente di una unità e perché gli altri non dovrebbero ragionare nello stesso modo? Da qui la tragedia. «Ciascun uomo è costretto in un sistema che lo costringe ad aumentare il suo gregge senza limiti - in un mondo che è limitato. La rovina è la destinazione verso cui tutti gli uomini corrono, ciascuno perseguendo il proprio migliore interesse in una società che crede nella libertà dei commons. La libertà in un commons porta la rovina a tutti» (Hardin, 1968).

Possiamo vedere anche questa situazione come un caso particolare del dilemma del prigioniero che può essere descritto come segue. Un pascolo viene condiviso da 2 allevatori, e N è il massimo numero di animali che vi possono trovare nutrimento. Nell’ipotesi che entrambi allevino $N/2$ animali il guadagno che ciascuno di loro ottiene alla fine dell’anno è di 10 unità (il tipo di unità è irrilevante ai fini del modello). Se però uno dei due decisero di aumentare il numero dei propri animali, portandolo ad N, riuscirebbe a portare il suo guadagno a 11 unità, naturalmente nell’ipotesi che l’altro non faccia lo stesso; l’altro invece avrebbe una perdita di 1, cioè un guadagno di -1. Infine, nel caso in cui entrambi aumentassero il numero dei loro animali, il pascolo si esaurirebbe presto e il loro guadagno si annullerebbe. Si tratta di un esempio molto semplice e certamente poco realistico ma efficace, che, in termini di gioco, può essere rappresentato dall’albero delle decisioni della figura 3.7, dove il primo livello corrisponde alle scelte del primo allevatore che abbiamo chiamato A; le scelte sono indicate con C (collabora, cioè rispetta il limite al numero degli animali) e NC (non collabora, cioè aumenta il numero degli animali) . Il secondo allevatore indicato con B ha di fronte a sé simili scelte. Chiaramente, in assenza di collaborazione, nell’ipotesi che ciascuno cerchi di massimizzare il proprio guadagno si arriva alla soluzione di equilibrio, in cui entrambi guadagnano 0.

La tesi di Hardin ha avuto molto successo ed ancora oggi rappresenta una sorta di luogo comune utilizzato per sostenere scelte politiche oppure per contrapporsi ad esse. Naturalmente si tratta anche di una tesi molto discussa. Sono molti i casi nella storia in cui risorse comuni sono state gestite in modo sostenibile da comunità senza bisogno di ricorrere né a sistemi autoritari di gestione né a privatizzazioni. Ostrom (1990) ad esempio esamina un certo numero di casi in cui risorse comuni sono state gestite per secoli, e continuano ad esserlo, in modo del tutto soddisfacente e sostenibile. Si tratta di casi in cui la risorse sono legate alla produzione agricola: terreni da coltivare, foreste, o acqua per l’irrigazione. In tutti questi casi, pur nella grande diversità
delle situazioni specifiche, si presentano alcuni tratti comuni. Ad esempio la stabilità della popolazione coinvolta: in tutti i casi le popolazioni [...] sono rimaste stabili per lunghi periodi di tempo. Gli individui hanno condiviso il passato e si aspettano di condividere il futuro. È importante per gli individui mantenere la propria reputazione come membri affidabili della comunità. Questi individui vivono fianco a fianco e lavorano gli stessi appezzamenti anno dopo anno. Essi si aspettano che i loro figli ed i loro nipoti ereditino la terra. [...] E i proprietari - o le loro famiglie - si aspettano di potere godere dei benefici degli eventuali costosi investimenti strutturali che dovessero essere fatti (Ostrom, 1990). In tutti questi casi poi sono state fissate norme di comportamento condivise, che si sono evolute nel tempo. In genere si tratta di norme che gli individui possono rispettare con una certa facilità, ed il cui rispetto rientra nell’interesse di lungo periodo di tutti i membri della comunità. Questo ha portato Ostrom a modificare il gioco dei commons rappresentato in figura 3.7, aggiungendo una prima mossa, in cui ciascuno dei due allevatori deve decidere se fare o no un patto con l’altro. Se il patto viene fatto, allora i due si impegnano a limitare ad $L/2$ il numero dei propri animali. Se si decide di non fare il patto, allora ci si trova nel caso precedente. Il nuovo albero delle decisioni è quello di 3.8. Naturalmente il patto ed i meccanismi di controllo del suo rispetto comporterà un costo, c, che dovrà essere ripartito fra i due allevatori, riducendo di conseguenza il loro guadagno. Nella figura 3.8 viene riportato l’albero decisionale così modificato. Con P si indica che il patto viene accettato e con NP che non viene accettato.

L’allevatore A, sulla base dell’albero delle decisioni, sa che, se non ader-
Figura 3.8. Il gioco della tragedia dei commons con il patto

sce al patto, nel caso peggiore il suo guadagno sarà nullo, qualunque sia la scelta successiva di B; se invece decide di aderire, allora, se B non aderisce, si troverà in una situazione identica alla precedente, mentre, se anche B decide di aderire, il suo guadagno sarebbe di $10 - c/2$. Chiaramente, se il costo c è contenuto, ad A converrà aderire al patto, e lo stesso vale per B.

Per quanto ancora oggi non mancano esempi di comunità che si autoorganizzano per gestire in modo efficiente e sostenibile risorse comuni, anche in settori nuovi e molto lontani da quelli tradizionali dell’uso di risorse naturali (ad esempio lo stesso internet), certamente, come evidenziato da Ostrom et al. (1999), i problemi oggi sono resi più complessi e difficili dall’emergere di nuovi fattori:

- **Problemi di scala.** Le risorse sono condivise da un numero anche molto grande di partecipanti; in molti casi si tratta non di individui o di comunità locali, ma di stati. Questo rende più difficile la possibilità di realizzare una gestione autoregolata.

- **Diversità culturali.** Le diversità culturali acute dalla globalizzazione possono rendere più difficile il trovare interessi comuni e reciproca comprensione, e possono portare a rapporti più conflittuali.

- **Interconnessioni fra diverse risorse.** La crescente dimensione dei problemi accentua le interconnessioni fra diverse risorse un tempo considerate distinte e non interagenti. Ad esempio, la gestione economica
3.4. Due paradossi rivelatori

delle foreste, il mantenimento della biodiversità, il clima e la capacità
dell’ambiente di assorbire emissioni inquinanti sono realtà collegate ed
interagenti.

- Accelerazione dei cambiamenti. La crescita della popolazione, lo svi-
luppo economico, la mobilità dei capitali e delle persone, l’innovazione
tecnologica avvengono ad un passo così veloce da rendere difficili quei
processi di apprendimento basati sull’esperienza che un tempo erano
comuni, e rendono a volte impossibile riparare ad errori eventualmente
fatti.

Va detto che lo stesso Hardin era cosciente delle esperienze positive del
passato nella gestione di commons. La sua convinzione era tuttavia che il
successo di quelle esperienze era dovuto al fatto che il pianeta si trovava
in condizioni di abbondanza di risorse rispetto alla popolazione. Le cose
sono ora drasticamente cambiate. In effetti la sua preoccupazione principale
riguarda la crescita della popolazione. Secondo Hardin esistono problemi
che non hanno soluzioni tecniche, nel senso che non bastano la tecnologia o
la scienza a risolverli: «Una soluzione tecnica può essere definita come una
che richiede solamente un cambiamento nelle tecniche delle scienze naturali,
richiedendo nulla o poco per quel che riguarda il cambiamento di valori o di
idee di moralità» (Hardin, 1968). Il problema della crescita della popolazione
è per Hardin proprio uno di questi problemi, ed è scoraggiante vedere che
molti di coloro che apparentemente se ne preoccupano «stanno cercando di
trovare una via per evitare i mali della sovrapopolazione senza abbandonare
nessuno dei privilegi di cui oggi godono».

3.4 Due paradossi rivelatori

Discuteremo in questo paragrafo due interessanti ed intriganti paradossi che
ci fanno comprendere come a volte il senso comune possa ingannare, e come
azioni che appaiono del tutto ragionevoli possano produrre risultati opposti
a quelli voluti e previsti.

3.4.1 Uso di risorse e paradosso di Jevons

Quando ci si trova di fronte ad una crisi dovuta all’eccessivo consumo di
qualche risorsa le due prime soluzioni che vengono alla mente, e che troviamo
immancabilmente sui giornali sono quella di ‘augmentare la produzione’ e
quella di fare ricorso a ‘tecniche più efficienti’. Tipico il caso dell’eccesso di
richiesta di energia dovuto all’ondata di caldo del giugno/luglio 2003 in Italia.
Anche in questo caso si sono sentite molte voci lamentare una scarsa capacità produttiva italiana (ad esempio a causa dell’abbandono del nucleare), e se ne sono sentite altre, anche se in misura minore, andare nella seconda direzione: abbiamo bisogno di tecnologie che consentano risparmi energetici.

Lasciamo stare la prima opzione che appare poco lungimirante, se non decisamente insensata, in una situazione in cui i consumi energetici nel mondo sviluppato hanno ormai raggiunto livelli elevatissimi e continuano ad aumentare, mentre l’inseguimento che i paesi del terzo mondo (la Cina in primo luogo) stanno facendo in termini di consumi fa prevedere un futuro di conflitti. Secondo le previsioni dell’Aie (Agenzia internazionale per l’energia) i consumi energetici nel 2030 saranno aumentati del 61% rispetto al 2000. Ci sono forti dubbi che questo sia compatibile con la limitatezza delle risorse e con la capacità della terra di sostenere il relativo inquinamento.

Cerchiamo invece di considerare la seconda: muoversi verso tecnologie che consentano un più efficiente uso delle risorse, ad esempio tecnologie che consentano risparmi energetici. Tutto ciò sembra la risposta più corretta e naturale, e certamente è qualcosa che va fatto. Ma siamo veramente sicuri che puntando tutto sul risparmio energetico si otterranno i risultati voluti? Il famoso paradosso di Jevons suggerisce molta prudenza.

L’economista inglese William Stanley Jevons (1835-1882) è noto come uno dei pionieri dell’analisi economica neoclassica contemporanea. Il suo lavoro più noto, “The Coal Question”, riguarda le relazioni fra crescita industriale britannica e costo del carbone. Complessivamente l’analisi di Jevons è ormai ampiamente superata, ma c’è un punto, nel capitolo 7, “Of the Economy of Fuel”14, che ha attratto l’interesse degli eco-economisti di oggi. Qui Jevons sostiene la tesi che un aumento di efficienza nell’uso di una risorsa naturale, ad esempio il carbone, abbia l’effetto di far aumentare la domanda della risorsa piuttosto che di farla diminuire. Deriva da confusione di idee «il supporre che l’uso economico della risorsa energetica sia equivalente ad una diminuzione di consumo. La verità è il contrario. È una regola che le nuove modalità economiche portano ad un aumento dei consumi in accordo con un principio riconosciuto in molti casi paralleli. [...] Lo stesso principio si applica, con addirittura maggior forza e chiarezza, all’uso di quell’agente generale che è il carbone. È proprio l’economia del suo uso che porta al suo estensivo consumo. [...] Né è difficile vedere come possa darsi questo paradosso. [...] Se la quantità di carbone usato nella fornace di una fonderia, ad esempio, diminuisce in rapporto al prodotto, i profitti del commercio aumenteranno, nuovo capitale sarà attratto, il prezzo del ferro diminuirà, ma

14Il testo del capitolo è reperibile all’indirizzo http://www-dse.ec.unipi.it/luzzati/documenti/jevons.htm.
3.4. Due paradossi rivelatori

la domanda per esso aumenterà; ed alla fine il maggiore numero di fornaci più che compenserà la diminuzione di consumo di ciascuna. E se anche questo non accadrà direttamente in un singolo settore, bisogna ricordare che il progresso in ciascun settore del processo manifatturiero stimola nuove attività in molti altri settori e porta indirettamente, se non direttamente, ad una maggiore pressione verso i nostri giacimenti di carbone».

![Figura 3.9. Relazioni causali del modello di Jevons](image)

Si tratta di un interessante esempio di sistema in cui sono presenti dei cicli causali che portano a risultati che, anche se una volta esaminati i diversi passaggi, sembrano ovvi, sono spesso in contraddizione con quello che appare come senso comune.

Le relazioni causali descritte da Jevons sono esplicitate nella figura 3.9. Come si vede, all’aumento dell’efficienza energetica (che può essere definita come il numero di unità prodotte per Kilowattora utilizzato nel processo produttivo) corrisponde una diminuzione dei costi di produzione e quindi una corrispondente diminuzione del prezzo ed un incremento del saggio di profitto (profitto per unità di prodotto); quest’ultimo spinge nuovi produttori ad entrare nel mercato, o anche un aumento di produzione dei produttori già presenti. Il risultato è un aumento dell’offerta e di conseguenza una ulteriore diminuzione dei prezzi di vendita. Ne segue un aumento della domanda. I cicli negativi presenti fanno sì che dopo un certo tempo si raggiunge una
nuova situazione di equilibrio. I cambiamenti delle abitudini dei consumatori indotte dal processo possono avere come conseguenza un aumento netto del consumo di energia.

L’amministrazione Usa ha però considerato i limiti imposti dal trattato come eccessivi e penalizzanti per l’industria americana. Il trattato non è stato quindi ratificato. Invece nel febbraio del 2002 è stato pubblicato il documento “Clear Skies Initiative” del presidente G. W. Bush15, nel quale sono indicate le linee politiche che sull’argomento l’amministrazione americana intende seguire: “La mia amministrazione è impegnata a ridurre l’intensità di emissione dei gas serra - cioè l’emissione per unità di attività economica - del 18% nei prossimi 10 anni. Questo metterà l’America in un cammino di rallentamento della crescita delle nostre emissioni di gas serra, e, nella misura in cui la scienza lo giustifichi, di fermare e fare cambiare direzione alla crescita delle emissioni. Questo è il modo di misurare il progresso basato sul buon senso. […] se però nel 2012 il nostro progresso non è sufficiente ed una scienza ben fondata giustifica ulteriori azioni, gli Stati Uniti risponderanno con misure aggiuntive”. È chiaro che dietro un ragionamento lacunoso16 come quello evidenziato dal passo citato ci sono precisi interessi economici, ma questi interessi riescono a prevalere anche perché manca da parte dei politici coinvolti e della stessa opinione pubblica la capacità di cogliere gli effetti di una data politica su un sistema socio-economico complesso e caratterizzato da marcate nonlinearità. Infatti, se è vero che l’efficienza energetica del

16Ricordiamo le considerazioni sui ritardi fatte nel capitolo precedente, dalle quali risulta chiaramente che “quando la scienza ben fondata [arrivasse a giustificare] ulteriori azioni”, potrebbe essere ormai troppo tardi perché queste azioni abbiano efficacia. Inoltre il diminuire l’intensità delle emissioni può essere illusorio se contemporaneamente aumenta il livello delle attività economiche e non si cerca di agire anche sui comportamenti e sui consumi.
3.4. Due paradossi rivelatori

sistema produttivo migliora, è anche vero che la crescita della produzione porta ad una continua crescita della quantità totale di risorse energetiche consumate. È una conferma dell’attualità del paradosso di Jevons.

Un altro interessante esempio concreto del paradosso di Jevons lo abbiamo analizzando il problema dell’inquinamento prodotto dal traffico automobilistico. Fra il 1970 ed il 1990 la California ha ridotto le emissioni inquinanti per automobile del 80 - 90%; ma il numero di auto è aumentato del 50% ed il numero di km percorsi per auto del 65%.

In effetti la regolamentazione ambientale non tocca i meccanismi che hanno portato alla diffusione dell’automobile negli Stati Uniti, che hanno a che vedere con il prezzo artificialmente basso della benzina e con la politica urbanistica di decentramento attraverso gli ampi suburbii residenziali ed i centri commerciali suburbani17. In una situazione di questo tipo la riduzione delle emissioni delle auto tende ad incoraggiare l’uso piuttosto che a scoraggiarlo. Infatti la riduzione delle emissioni si accompagna in generale ad una maggiore efficienza energetica (più km per litro di benzina) e quindi ad una riduzione dei costi di trasporto. Entrambe le cose, il minore apparenente inquinamento e il minore costo, rendono meno penalizzante l’uso dell’auto e quindi incoraggiano un assetto urbano che postula il ricorso al mezzo privato. Questo ovviamente non vuol dire che non sia necessario puntare su una riduzione delle emissioni e su una maggiore efficienza energetica; vuole piuttosto dire

17Interessante a questo proposito l’analisi di Roberts (2003) che afferma provocatoriamente: “War in Iraq is inevitable. That there would be war was decided by North American planners in the mid-1920s. That it would be in Iraq was decided much more recently. The architects of this war were not military planners but town planners. War is inevitable not because of weapons of mass destruction, as claimed by the political right, nor because of western imperialism, as claimed by the left. The cause of this war, and probably the one that will follow, is car dependence.

The US has paved itself into a corner. Its physical and economic infrastructure is so highly car dependent that the US is pathologically addicted to oil. Without billions of barrels of precious black sludge being pumped into the veins of its economy every year, the nation would experience painful and damaging withdrawal.

The first Model T Ford rolled off the assembly line in 1908 and was a miracle of mass production. In the first decade of that century, car registrations in the US increased from 8,000 to almost 500,000. Within the cities, buses replaced trams, and then cars replaced buses. In 1932, General Motors bought up America’s tramways and then closed them down. But it was the urban planners who really got America hooked. Car ownership offered the possibility of escape from dirty, crowded cities to leafy garden suburbs and the urban planners provided the escape routes.

Throughout the 1920s and 1930s, America road built itself into a nation of home-owning suburbanites. In the words of Joni Mitchell: They paved paradise and put up a parking lot. Cities such as Los Angeles, Dallas and Phoenix were molded by the private passenger car into vast urban sprawls which are so widely spread that it is now almost impossible to service them economically with public transport”.
che, accanto a queste, ci vogliono politiche che scoraggino l’uso delle auto private e che riducano la necessità di trasporto privato\footnote{Interessante a questo proposito l’articolo di Peñalosa (2003) sui modelli di sviluppo urbano, quelli del mondo ricco, e quelli, necessariamente diversi, che dovrebbero seguire i paesi in via di sviluppo.}.

3.4.2 Aumentare le possibilità di scelta porta a maggiore efficienza? Il paradosso di Braess

Spesso esistono modi diversi per raggiungere i diversi obiettivi che gli individui di una comunità si pongono. Possiamo assumere, semplificando un po’, che ciascuno sceglia il modo per lui più economico. Supponiamo ora di aggiungere nuovi modi con i quali sia possibile raggiungere l’obiettivo, e che essi siano meno costosi dei precedenti. Questo è sufficiente a garantire una spesa minore per ciascuno degli individui e per la collettività nel suo insieme? Il senso comune potrebbe indurci a rispondere positivamente. In realtà la nonlinearità di molti sistemi reali rende le cose più complesse e meno intuitive. Useremo per illustrare questo fatto un semplice esempio didattico tratto dallo studio dei modelli di trasporto.

Immaginiamo di avere la rete di trasporto\footnote{Una rete di trasporto è un grafo, cioè un insieme di nodi, o punti, e di archi, o connessioni tra i nodi, in cui assumiamo che fluisca un qualche tipo di traffico (passeggeri, automobili, merci, . . .).} di figura 3.10\footnote{Questo esempio è ripreso dal sito www.CrowdDynamics.com.}, dove esistono 2 percorsi per andare da A a D, uno che passa attraverso B e l’altro attraverso C. Sugli archi della rete, che rappresentano tratte stradali, sono indicati i tempi unitari di percorrenza, che sono della forma $a + bx$, dove x è il numero di veicoli che attraversano, nella stessa direzione, l’arco ed a e b sono delle costanti. Come si vede il tempo di percorrenza ha una componente costante ed una dipendente dal numero di veicoli che transitano sull’arco, cioè dalla congestione. Ad esempio nell’arco (A, B) il tempo di percorrenza che ciascun veicolo sperimenta vale $1 + 5 = 6$ se l’arco viene percorso da un solo veicolo, vale invece $1 + 5 \times 3 = 16$, se esso è utilizzato da 3 veicoli.

Immaginiamo ora che ci siano 6 persone che ogni mattina alla stessa ora si devono recare da A a D (il tipico percorso casa-lavoro dell’ora di punta della mattina) e che lo facciano usando la propria auto. Ciascuna di esse presumibilmente cercherà di scegliere il percorso più breve (in termini di tempo di percorrenza), e possiamo immaginare che inizi, nei primi giorni, facendo dei tentativi fino a stabilizzarsi alla fine sul percorso che gli appare più breve. Dopo un certo tempo viene così raggiunta una situazione di equilibrio caratterizzata dal fatto che nessuno dei sei guidatori riuscirebbe a migliorare...
3.4. Due paradossi rivelatori

re la sua situazione cambiando precorso. L’assunzione qui è che i guidatori non comunichino fra di loro, e che quindi non possano mettersi d’accordo: ciascuno si preoccupa solamente di se stesso e del proprio percorso. Questa è in effetti un’ipotesi ragionevole nel caso del trasporto privato.

È facile verificare che una situazione di equilibrio si ha quando tre guidatori scelgono il percorso $A - B - D$ e gli altri tre il percorso alternativo $A - C - D$. In questo caso ciascuno impiega $27 + 6 \times 3 = 45$ unità di tempo. La situazione è riassunta nella seguente tabella.

Tabella di equilibrio

<table>
<thead>
<tr>
<th>Percorso</th>
<th>n. di viaggiatori</th>
<th>tempo di percorrenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A - B - D$</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>$A - C - D$</td>
<td>3</td>
<td>45</td>
</tr>
</tbody>
</table>

Immaginiamo ora che all’assessore al traffico del Comune in cui si trova questa rete di trasporto, per diminuire la congestione del traffico e le sue conseguenze in termini di inquinamento, venga l’idea di costruire un tratto di strada veloce fra B e C, una strada così ampia che il tempo di percorrenza sia sempre 1 indipendentemente dal traffico. La situazione diventa allora quella della figura 3.11

Ma la nuova strada migliora davvero la situazione del traffico? L’intuizione suggerisce che se non la migliora comunque non la può peggiorare: alla fine i guidatori possono sempre astenersi dall’usarla. Vediamo nei fatti cosa accade, esaminando il comportamento degli utenti che si trovavano nella situazione di equilibrio descritta precedentemente. Immaginiamo che il loro cambiamento di percorso avvenga molto lentamente e per passi.

Innanzitutto osserviamo che quella che prima era una situazione di equilibrio, ora non lo è più. Sono stati infatti aggiunti due percorsi: $A - B - C - D$ e $A - C - B - D$. Se uno dei guidatori che prima seguivano il percorso $A - B - D$ decidesse ora di non andare direttamente da B a D, ma piuttosto di passare
Capitolo 3. Cooperazione e competizione

Figura 3.11. *La nuova rete con l’arco (B, C)*

...
3.4. Due paradossi rivelatori

percourrenza di una unità di tempo passando a livello 48. Lo stesso vale per il
viaggiatore che continua a seguire il percorso $A - B - D$. La nuova situazione
è la seguente:

<table>
<thead>
<tr>
<th>Percorso</th>
<th>n. di viaggiatori</th>
<th>tempo di percorrenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A - B - D$</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>$A - C - D$</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>$A - B - C - D$</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>$A - C - B - D$</td>
<td>0</td>
<td>57</td>
</tr>
</tbody>
</table>

Il tempo di percorrenza per coloro che seguivano il percorso $A - C - D$
è però cresciuto di 5 unità di tempo. Di conseguenza uno di loro si spostera
sul percorso $A - B - C - D$ per migliorare la propria condizione, riuscendo in
effetti a risparmiare una unità di tempo. La nuova situazione è quella della
seguente tabella, che rappresenta una situazione di equilibrio stabile:

<table>
<thead>
<tr>
<th>Percorso</th>
<th>n. di viaggiatori</th>
<th>tempo di percorrenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A - B - D$</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>$A - C - D$</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>$A - B - C - D$</td>
<td>4</td>
<td>53</td>
</tr>
<tr>
<td>$A - C - B - D$</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>

Questi spostamenti successivi in cui ciascuno ha cercato di migliorare la
propria situazione hanno portato ad un peggioramento consistente per ciascu-
ono dei guidatori. Globalmente mentre prima venivano passate in auto 45×6
$= 270$ unità di tempo, ora ne vengono passate $53 \times 6 = 318$, cioè ben 48 in
più. Alla fine si è ottenuto un peggioramento complessivo della congestione e
dell’inquinamento, cioè il contrario di ciò che si voleva ottenere. Chiaramente
l’esempio fatto ha un valore solo teorico, ma il comportamento evidenziato
ha conferme nella realtà: nella letteratura sull’argomento sono riportati casi
concreti in cui la realizzazione di nuove strade in città congestionate per il
traffico ha portato a peggioramenti piuttosto che a miglioramenti.

Naturalmente la situazione potrebbe essere migliorata se tutti i guidatori
si mettessero d’accordo, cioè se cooperassero. La cosa è però nel caso in que-
stione praticamente impossibile. È possibile tuttavia pensare ad interventi di
tipo normativo che impongano comportamenti che portino ad una situazione
simile a quella che si potrebbe ottenere con la cooperazione. In questo ca-
so la cooperazione consisterebbe nella disponibilità ad accettare delle forme
di regolamentazione che apparentemente possono svantaggiare qualcuno, ma
che producono un effetto benefico sul complesso della collettività.
Capitolo 3. Cooperazione e competizione
Capitolo 4

Votazioni

4.1 Introduzione

Il votare è uno dei modi più usati per risolvere situazioni in cui diversi individui (attori nel processo decisionale) hanno idee differenti o spesso contrastanti su quale sia la migliore decisione da prendere in un dato contesto, su quali siano le persone più adatte a governare un paese o una comunità locale, su quali debbano essere le priorità nell’azione del governo, su quale tra i libri in concorso ad un premio letterario sia il più meritevole,

Particolare rilevanza ha il voto in politica, al punto che il voto è diventato uno degli elementi paradigmatici che viene generalmente usato, in modo a volte un po’ troppo semplicistico, per tracciare una linea di separazione fra democrazia ed autoritarismo.

È davvero così? Basta che ci siano regolari votazioni in un paese perché si possa parlare di democrazia? L’esito che deriva da una votazione è sempre il migliore? Non dipenderà l’esito della votazione anche dal metodo di votazione scelto? Non potrà succedere che alle scelte identiche dei singoli votanti possano corrispondere esiti anche molto diversi in dipendenza del metodo di votazione scelto?

Vedremo nel seguito del capitolo non solo che esistono diversi metodi di votazione, ma che la scelta dell’uno o dell’altro di tali metodi può portare a risultati anche molto diversi. Vedremo anche che non esiste un metodo che sia chiaramente il migliore. Ciò non vuol dire tuttavia che tutti i metodi siano equivalenti; è invece importantissimo comprendere quali siano i pregi ed i limiti di ciascuno di essi, anche per evitare risultati imprevisti o addirittura paradossali.

È interessante osservare come esista una vera e propria teoria matematica del votare, e come tale teoria sia nata proprio quando la demo-
crazia è diventata progetto politico nell’Europa moderna, cioè negli anni dell’illuminismo.

4.2 Votazioni ed ordinamenti

In questa sezione, considereremo un contesto apparentemente semplice, ma sufficiente a farci comprendere la complessità del problema della scelta del metodo di votazione.

Assumiamo che ci siano \(n \) votanti ed \(m \) alternative o candidati. Assumiamo poi che ciascun votante sia in grado di esprimere un ordinamento completo dei candidati sulla base delle sue preferenze. Una situazione di questo tipo è ad esempio indicata nella tabella 4.1, dove è \(n = 10, m = 3 \). Una tabella di questo tipo viene detta profilo di voto. Le righe corrispondono ai candidati, mentre le colonne corrispondono ai distinti ordinamenti espressi dai votanti; nella intestazione di ciascuna colonna è indicato il numero dei votanti che ha espresso quell’ordinamento. I numeri nella tabella indicano le posizioni nell’ordinamento in cui i votanti hanno posto i candidati. Quindi, ad esempio, 3 votanti su 10 (1\(^{a}\) colonna) hanno posto il candidato \(a \) in prima posizione, \(b \) in seconda e \(c \) in terza, cioè hanno espresso l’ordinamento \(a \succ b \succ c \), mentre un solo votante ha espresso l’ordinamento \(c \succ a \succ b \).

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(b)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(c)</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 4.1. Un esempio di profilo di voto

Il primo problema che ci poniamo è quello di determinare il candidato da eleggere (o l’alternativa da scegliere). Ovviamente se fosse \(m=2 \) allora il problema sarebbe di facile soluzione. Potremmo contare quanti preferiscono il primo e quanti il secondo e scegliere poi il candidato che ha raccolto il maggior numero di preferenze. Dovremmo naturalmente darci una regola per risolvere il caso di parità.

\(^1\)Il simbolo \(\succ \) si legge “preferito a”, per cui \(a \succ b \) indica che \(a \) è preferito a \(b \).
4.2. Votazioni ed ordinamenti

Più complesso è il caso in cui si siano più di due candidati, nessuno dei quali si trova in prima posizione nella maggioranza degli ordinamenti individuali. Questo è il problema che tratteremo nei successivi paragrafi. In realtà tratteremo un problema più ampio, che include quello della scelta del vincitore; si tratta del problema di derivare, dai singoli ordinamenti espressi dai votanti, un unico *ordinamento aggregato* che rappresenti, nel modo migliore possibile, le preferenze di tutta la collettività coinvolta nella votazione. Chiaramente questo problema include il precedente: il candidato che si trova in testa nell'ordinamento aggregato è il vincitore.

Per evitare inessenziali complicazioni, nella trattazione noi assumeremo che i votanti siano sempre in grado di ordinare in modo forte (cioè senza situazioni di parità) i candidati. Assumeremo anche che tutti gli ordinamenti espressi dai votanti siano completi, cioè che non ci siano coppie di candidati su cui qualche votante non sia in grado di effettuare una valutazione relativa, ad esempio per mancanza di informazione, o per altri motivi (ad esempio, pur preferendo *a* a *b* potrei non volerlo dire perché amico di *b*).

4.2.1 Il metodo di Condorcet

Il metodo di Condorcet (1785) può essere considerato come il punto di partenza di una teoria matematica delle votazioni. Il criterio di Condorcet è molto semplice ed apparentemente convincente:

Il candidato che, confrontandosi singolarmente con ciascuno degli altri, li vince tutti è il vincitore.

Si parla in questo caso di *vincitore secondo Condorcet*. Ad esempio nel caso della tabella 4.1, abbiamo che, nell’ipotesi che i votanti si attengano agli ordinamenti espressi anche in presenza di due soli candidati,

- in un confronto fra *a* e *b*, *b* vincerebbe per 6 a 4,
- un confronto fra *a* e *c*, darebbe risultato di parità, 5 a 5,
- in un confronto fra *b* e *c*, *b* vincerebbe per 7 a 3.

In questo caso il vincitore secondo Condorcet è *b*. Questa informazione è racchiusa in modo compatto nella seguente matrice, in cui si ha una riga ed una colonna per ciascun candidato, e l’elemento in posizione (*i*, *j*) è la frazione di votanti che hanno preferito *i* a *j* (cioè il numero di votanti che hanno preferito *i* a *j* diviso il numero totale di votanti):
Capitolo 4. Votazioni

La riga i cui elementi siano tutti maggiori a 0.5 (eccetto naturalmente quello nella diagonale) corrisponde al vincitore secondo Condorcet.

Possiamo concludere che dal profilo della tabella 4.1 segue che $b \succ a$ e $b \succ c$, mentre a e c sono equivalenti, nel senso che in un confronto testa a testa risulterebbero alla pari; questo viene espresso scrivendo $a \sim c$. La relazione fra i candidati può essere espressa in modo efficace per mezzo del grafo di fig. 4.1, dove gli archi orientati rappresentano la relazione di preferenza, mentre l’arco non orientato rappresenta l’indifferenza. È facile individuare sul grafo il vincitore secondo Condorcet: è il candidato corrispondente a quel nodo, se esiste, da cui parte un arco orientato verso ogni altro nodo del grafo.

\[\begin{array}{c|ccc} & a & b & c \\ \hline a & \cdot & 0.4 & 0.5 \\ b & 0.6 & \cdot & 0.7 \\ c & 0.5 & 0.3 & \cdot \end{array} \]

Figura 4.1. Grafo rappresentante la relazione di preferenza derivata dal profilo della tabella 4.1

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabella 4.2. Assenza di un vincitore secondo Condorcet

Chiaramente se un vincitore secondo Condorcet esiste esso è unico. Purtroppo però non è detto che un tale vincitore esista sempre. Consideriamo ad esempio il profilo della tabella 4.2 relativo sempre ad una votazione con 10 elettori e 3 candidati.
4.2. Votazioni ed ordinamenti

Qui abbiamo che a batte b con 7 voti contro 3, che con la stessa proporzione di voti b batte c e che c batte a con 6 voti contro 4. La situazione è allora $a \succ b \succ c \succ a$. Esiste quindi un ciclo, che impedisce che possa esistere un vincitore secondo Condorcet. Il grafo è quello di fig. 4.2.

![Figura 4.2.](image)

Il metodo di Condorcet sembra molto convincente e, il vincitore secondo Condorcet, quando esiste, sembra certamente un’ottima scelta. Ma lo è davvero? Consideriamo ad esempio il profilo della tabella 4.3.

<table>
<thead>
<tr>
<th></th>
<th>19</th>
<th>21</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>e</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>f</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>g</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>x</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 4.3.

Qui esiste un vincitore secondo Condorcet, ed è il candidato x, che vince su tutti gli altri candidati con 51 voti contro 50. Analizziamo però meglio il suo risultato rispetto a quello del candidato y, costruendo la tabella 4.4 in cui sono riportati, per ogni k, il numero votanti che collocano i candidati x ed y in posizione k nel loro ordinamento.

Da un esame della tabella sembra che sia piuttosto y a dover vincere: non solo per quasi la metà dei votanti y è la prima scelta, mentre x non lo è per nessuno, ma per ogni votante che colloca x in posizione k ne esiste almeno uno che colloca y in una posizione h migliore ($h < k$).
Possiamo concludere che, per quanto il metodo di Condorcet appaia ragionevole e ben fondato, bisogna tuttavia essere molto cauti nell’interpretazione dei risultati che esso fornisce.

4.2.2 Il metodo di Borda

Un criterio diverso è quello proposto da Borda (1791):

> Si attribuisce a ciascun candidato un punteggio dato dalla somma dei numeri che rappresentano le sue posizioni negli ordinamenti dei diversi elettori e si considera vincitore il candidato che ottiene il punteggio minore.

Se si considera ad esempio il profilo della tabella 4.3, si vede che il candidato \(y \) con 245 (=50 \(\times \) 1 + 30 \(\times \) 3 + 21 \(\times \) 5) punti precede in modo netto il candidato \(x \) che ha 501 punti; ma anche i candidati \(a \) con 325 punti e \(b \) con 447 punti precedono \(x \). Osserviamo che il metodo di Borda fornisce anche un ordinamento globale fra i candidati, che nel caso considerato è: \(y \succ a \succ b \succ x \succ e \succ c \succ f \succ d \succ g \). In questo caso l’ordinamento è risultato forte, cioè non ci sono candidati con lo stesso punteggio. Ma in generale è possibile che ciò accada, e quindi che questo metodo non fornisca un unico vincitore, ma piuttosto un insieme di candidati in situazione di indifferenza relativa. Con il metodo di Condorcet invece, se il vincitore esiste esso è unico.

Da quanto detto si potrebbe dedurre che il metodo di Borda sia quello più adatto ad esprimere correttamente le preferenze degli elettori. In realtà non è sempre così. Anzi questo metodo si presta a manipolazioni. Consideriamo il seguente esempio. Una commissione formatata da tre membri deve selezionare un tecnico per un incarico professionale. Supponiamo che si presentino 4 candidati, \(a, b, c \) e \(d \) e che un esame dei loro curricula evidenzi chiaramente che \(a \) è il candidato con più esperienza e titoli più significativi, che \(b \) è un buen candidato, ma inferiore ad \(a \), e che infine \(c \) e \(d \), nell’ordine, sono candidati molto modesti. Le corrette preferenze dei tre commissari, che abbiamo indicato con \(C_1, C_2 \) e \(C_3 \), siano quelle indicate nella tabella 4.5.
4.2. Votazioni ed ordinamenti

Chiaramente in questa situazione l’ordinamento finale prodotto dal metodo di Borda sarebbe $a \succ b \succ c \succ d$.

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabella 4.5.

Supponiamo infine che due dei commissari, C_1 e C_2, votino correttamente, mentre il 3^0, C_3, volendo favorire il candidato b suo amico, decida di mettere in quarta posizione il candidato a. Il risultato è sintetizzato nella tabella 4.6.

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>Borda</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

Tabella 4.6.

Il vincitore risulta b con 5 punti contro i 6 di a che però è il vincitore secondo Condorcet. Osserviamo che per il successo della manipolazione sono essenziali in questo caso i candidati c e d. Senza di essi il commissario disonesto avrebbe dovuto mettere a in seconda posizione ed il risultato sarebbe stato di 4 punti per a e di 5 per b, con la conseguente vittoria di a. Quindi il metodo di Borda si presta a manipolazioni del voto; cioè i votanti possono riuscire a modificare il risultato a loro vantaggio votando in modo difforme dalle loro vere preferenze.

L’esempio riportato mette in luce un’altra caratteristica negativa del metodo di Borda: il risultato è influenzato da alternative (candidati in questo caso) non significative, cioè non gode della proprietà di indipendenza dalle alternative irrilevanti. Un metodo di votazione gode della proprietà di indipendenza se, per ogni coppia di candidati, a e b, un cambiamento del profilo di voto che non modifichi la posizione relativa di a e b nelle preferenze individuali, non modifica la loro posizione relativa neppure nell’ordinamento.
Capitolo 4. Votazioni

aggregato risultante. Invece nell’esempio visto, il passaggio dal profilo di voto della tabella 4.5 a quello della tabella 4.6, malgrado rimanga inalterata la posizione relativa di \(a \) e \(b \) in ciascuno degli ordinamenti individuali, porta ad una inversione della loro posizione nell’ordinamento aggregato. Dal primo profilo si ottiene infatti \(a \succ b \), mentre dal secondo si ha invece \(b \succ a \), eppure \(C_1 \) e \(C_2 \) continuano a preferire \(a \) a \(b \) e \(C_3 \) continua a preferire \(b \) ad \(a \).

4.2.3 Metodo delle eliminazioni successive

Un metodo che viene a volte usato è quello delle eliminazioni successive. Questo metodo si svolge per fasi successive, in ciascuna delle quali tutti votano per il candidato preferito fra quelli ancora in lizza e viene eliminato il candidato che riceve meno voti. Vincerà l’ultimo candidato rimasto in lizza, quando tutti gli altri saranno stati eliminati.

Proviamo ad applicare questo metodo al caso appena visto prima, supponendo che i membri della commissione votino ad ogni passo in modo coerente rispetto agli ordinamenti dei candidati da loro espressi. Alla prima votazione \(a \) riceve 2 voti e \(b \) un voto, mentre risultano ultimi senza alcun voto i candidati \(c \) e \(d \) che vengono quindi eliminati. Alla seconda votazione il risultato sarà lo stesso con la conseguente eliminazione di \(b \) e la vittoria di \(a \). In questo caso quindi viene eliminata la distorsione prodotta invece dal metodo di Borda. Proviamo ora ad applicare il metodo ad un esempio un po’ più complesso, quello rappresentato dal profilo di voto della tabella 4.7, dove abbiamo supposto ci siano 11 votanti, e le colonne rappresentano le preferenze dei votanti nell’ordine, dal primo all’undicesimo.

<table>
<thead>
<tr>
<th></th>
<th>1 1 2 3 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1 1 5 4 3 5 2 5</td>
</tr>
<tr>
<td>(b)</td>
<td>2 2 2 2 2 1 4 1</td>
</tr>
<tr>
<td>(c)</td>
<td>3 4 1 5 4 3 5 1</td>
</tr>
<tr>
<td>(d)</td>
<td>4 5 4 1 5 4 4 2</td>
</tr>
<tr>
<td>(e)</td>
<td>5 3 3 3 1 1 3 3</td>
</tr>
</tbody>
</table>

Tabella 4.7.

È facile verificare che i voti ottenuti dai candidati nelle successive votazioni sono quelli riportati nella seguente tabella, dove le colonne rappresentano i risultati delle 4 votazioni successive.
4.2. Votazioni ed ordinamenti

Si ha allora che il vincitore risulta il candidato \(a \), mentre sia il metodo di Borda che quello di Condorcet farebbero vincere \(b \), che in effetti appare un candidato molto gradito, che quasi tutti i votanti considerano come la loro seconda scelta migliore. Anzi nell’ordinamento fornito dal metodo di Borda \(a \) risulta essere l’ultimo fra i candidati. Ancora una volta scopriamo come sia prudente non fare troppo affidamento sulla bontà di un metodo di votazione; vedremo nel seguito che questa prudenza ha delle ragioni teoriche consistenti.

Un altro limite di questo approccio viene evidenziato dal seguente esempio. Supponiamo di avere il profilo di voto della tabella 4.8.

<table>
<thead>
<tr>
<th></th>
<th>1(^a)</th>
<th>2(^a)</th>
<th>3(^a)</th>
<th>4(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(c)</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(d)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>−</td>
</tr>
<tr>
<td>(e)</td>
<td>2</td>
<td>2</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Tabella 4.8.

Supponiamo che queste siano le preferenze rivelate da una indagine demoscopica una settimana prima del voto. Se si mantenessero al momento del voto, queste preferenze porterebbero ad una vittoria di \(a \). Infatti alla prima votazione \(a \) prenderebbe 6 voti, \(b \) 6 voti e \(c \) 5 voti. Verrebbe allora eliminato \(c \), e nella successiva votazione \(a \) prenderebbe 11 voti (si aggiungono quelli di chi aveva in prima posizione \(c \)), risultando così il vincitore. Assumiamo ora che \(a \), volendo aumentare le sue probabilità di successo, decida di accentuare nell’ultima settimana la sua campagna elettorale concentrandosi sugli elettori che preferiscono \(b \), ma che lo accetterebbero come seconda scelta, cioè quelli a lui più vicini fra i sostenitori di \(b \). Supponiamo che questa campagna abbia successo e che i due elettori che avevano come preferenze \(b \succ a \succ c \) siano ora convinti a cambiare preferendo \(a \) a \(b \), cioè modificando le loro preferenze nelle \(a \succ b \succ c \). Il nuovo profilo di voto diventa allora quello seguente tabella 4.9.
Nell’ipotesi che gli elettori votino secondo queste preferenze, avremo allora che al primo turno a prende 8 voti, b 4 e c 5; b viene allora eliminato. Al secondo turno, c vince su a con 9 voti contro 8. Abbiamo così l’effetto che un miglioramento nelle posizioni relative di a lo fa passare da una situazione di vittoria ad una di sconfitta contro le aspettative (ed in un certo senso anche contro il buonsenso). Un metodo elettorale che ha questa caratteristica viene detto non monotono.

Consideriamo ora il profilo di voto della tabella 4.10, con due soli candidati e 17 votanti. Chiaramente il metodo delle eliminazioni successive porta all’ordinamento $b \succ a$.

Immaginiamo ora che si presenti un terzo candidato c, e che tutti gli elettori lo preferiscano a b, mentre quelli che avevano a come prima scelta continuino a preferire a sia a b che a c. Il profilo di voto risultante è quello della tabella 4.11. Nessuno degli elettori ha modificato l’ordinamento relativo tra a e b, tuttavia applicando il metodo delle votazioni successive abbiamo che b viene ora eliminato alla prima votazione ed alla seconda c vince su a per un voto. L’ordinamento finale che si ottiene è $c \succ a \succ b$; quindi l’inserimento di un terzo candidato ha prodotto un ordinamento aggregato in cui a precede b, mentre in assenza del candidato c succedeva il contrario. Si ha allora che la posizione relativa di due candidati nell’ordinamento aggregato non dipende solamente dalla loro posizione relativa nei singoli ordinamenti, ma anche dalla posizione degli altri candidati. Come già per il metodo di Borda, possiamo affermare che anche il metodo delle eliminazioni successive non gode della proprietà di indipendenza.
4.2. Votazioni ed ordinamenti

Tabella 4.11.

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Questo ci fa sospettare che anche questo metodo si possa prestare a manipolazioni. È vero? Possiamo rispondere a questa domanda usando lo stesso esempio di prima ma al contrario. Supponiamo che una commissione con 17 membri debba scegliere il proprio presidente e che i candidati siano 3. Il profilo di voto sia quello indicato nella tabella 4.9. Questo profilo di voto indica le effettive preferenze dei membri della commissione. Usando il metodo delle votazioni successive si ha l’elezione del candidato c, pur essendo a il candidato che è considerato la prima scelta della maggioranza dei membri. Immaginiamo che i sostenitori di a si mettano d’accordo e che due di essi votino come prima scelta b invece del loro preferito a. Si avrebbe allora il profilo di voto della tabella 4.8, e quindi la vittoria di a. Abbiamo cioè il caso di una maggioranza relativa che, avendo di fronte due candidati avversari, utilizza la sua forza per rafforzare il più debole dei due, in modo da eliminare al primo turno il più forte, e quindi poter vincere al secondo turno. Possiamo concludere che il metodo delle votazioni successive si presta, come quello di Borda, a manipolazioni.

In pratica non è necessario che vengano effettuate votazioni successive; basta chiedere agli elettori di dare un ordinamento completo dei candidati ed usare questo ordinamento nell’ipotesi che, una volta eliminata la propria prima scelta, un elettore voterebbe per la seconda e così via. Il metodo così realizzato viene anche chiamato Instant Runoff Voting e fu proposto in Inghilterra nel XIX secolo da Thomas Hare.

Il metodo delle eliminazioni successive può essere generalizzato fermandosi dopo \(k \) iterazioni ed eliminando alla votazione \(i^{esima} \) gli \(h_i \) candidati che hanno ottenuto meno voti. In questo caso il metodo nella sua forma originale corrisponde alla scelta \(k = m - 1 \) e \(h_i = 1 \), per ogni \(i \), dove, ricordiamo, \(m \) è il numero dei candidati.

Se poniamo \(k = 1 \) e \(h_1 = m - 1 \) abbiamo il metodo elettorale uninominale secco, in cui viene scelto il candidato che alla prima ed unica votazione riceve il maggior numero di voti. Questo è tradizionalmente il sistema elettorale inglese. Se poniamo invece \(k = 2 \), \(h_1 = m - 2 \) e \(h_2 = 1 \), abbiamo il sistema uninominale a due turni in cui nel primo turno si scelgono i due candidati
che hanno riportato il maggior numero di voti, e poi nel ballottaggio del secondo turno si sceglie il vincitore. Questo è il sistema elettorale francese con l’accorgimento che il secondo turno non si effettua se al primo turno un candidato riceve la maggioranza assoluta dei voti. Chiaramente in questo caso il secondo turno sarebbe inutile. È abbastanza intuitivo il fatto che queste varianti rischiano di accentuare piuttosto che eliminare le difficoltà che si incontrano nell’applicazione del metodo delle eliminazioni successive, come viene evidenziato nell’esempio seguente.

Esempio 4.1: Il caso delle elezioni presidenziali francesi del 2002

Nel primo turno delle elezioni presidenziali dell’aprile 2002 i due principali candidati erano il presidente uscente, Jaques Chirac, leader del centro destra, ed il primo ministro, Lionel Jospin, socialista, leader del centro sinistra. C’erano poi altri candidati ‘minorì’, alcuni su posizioni radicalmente contrapposte ad entrambi i due candidati principali, altri invece espressione di diverse aree all’interno degli schieramenti di centro destra e di centro sinistra. Riportiamo nel seguito una tabella con le percentuali dei voti ottenute dai 16 candidati, raggruppati per area politica di appartenenza.

<table>
<thead>
<tr>
<th>Area politica</th>
<th>Candidato</th>
<th>% voti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrema Destra</td>
<td>Le Pen</td>
<td>16,86</td>
</tr>
<tr>
<td></td>
<td>Mégret</td>
<td>2,34</td>
</tr>
<tr>
<td>Centro Destra</td>
<td>Chirac</td>
<td>19,88</td>
</tr>
<tr>
<td></td>
<td>Bayrou</td>
<td>6,84</td>
</tr>
<tr>
<td></td>
<td>Madelin</td>
<td>3,91</td>
</tr>
<tr>
<td></td>
<td>Boutin</td>
<td>1,19</td>
</tr>
<tr>
<td>Socialisti</td>
<td>Jospin</td>
<td>16,18</td>
</tr>
<tr>
<td></td>
<td>Chevenement</td>
<td>5,33</td>
</tr>
<tr>
<td></td>
<td>Taubira</td>
<td>2,32</td>
</tr>
<tr>
<td>Verdi</td>
<td>Mamère</td>
<td>5,25</td>
</tr>
<tr>
<td>Comunisti</td>
<td>Hue</td>
<td>3,37</td>
</tr>
<tr>
<td>Estrema Sinistra</td>
<td>Laguiller</td>
<td>5,72</td>
</tr>
<tr>
<td></td>
<td>Besancenot</td>
<td>4,25</td>
</tr>
<tr>
<td></td>
<td>Gluckstein</td>
<td>0,47</td>
</tr>
<tr>
<td>Altri</td>
<td>Saint-Josse</td>
<td>4,23</td>
</tr>
<tr>
<td></td>
<td>Lepage</td>
<td>1,88</td>
</tr>
</tbody>
</table>

Possiamo assumere ragionevolmente che un elettore che aveva votato, nel primo turno, per un candidato socialista, comunista, verde o di estrema sinistra preferisse comunque Jospin a Chirac e quest’ultimo a Le Pen. In realtà molti di questi elettori avevano votato il loro candidato di prima scelta nella convinzione che Jospin avrebbe comunque passato il primo turno e prevedendo di votare per lui al secondo. D’altra parte, considerando la netta chiusura politica della destra moderata nei riguardi di Le Pen, si può parimenti assumere che una grande maggioranza degli elettori del centro destra avrebbe preferito Jospin a Le Pen. Il risultato è però che Jospin, pur essendo preferito a Le Pen da una considerevole maggioranza degli elettori, è stato escluso al primo turno a favore di quest’ultimo.
4.2.4 Voto per approvazione

Questo metodo di voto, noto nel mondo anglosassone come Approval Voting, differisce dai precedenti perché non si richiede ai votanti di votare per un solo candidato né di indicare un ordinamento completo dei candidati. I votanti dovranno decidere quale è l’insieme dei candidati che incontrano la loro approvazione (non importa in che ordine) e li votano tutti, indipendentemente dal loro numero. Vince il candidato che ha riportato il maggior numero di voti.

Consideriamo ad esempio il caso della tabella 4.7, ed assumiamo che ciascuno dei votanti decida di votare per i due candidati che si trovano nei primi due posti del suo ordinamento; cioè ciascuno vota per la sua prima e per la sua seconda scelta. In questa ipotesi i candidati riceverebbero i voti indicati nella seconda colonna della seguente tabella:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il vincitore risulta allora il candidato b che, come abbiamo già osservato, appare quello più gradito. Se però i votanti decidessero di inserire nei loro insiemi di candidati approvati anche le terze scelte, allora il candidato e otterrebbe tanti voti quanti b (terza colonna della tabella).

Questo è un metodo che dà certamente maggiori possibilità di scelta agli elettori. Un elettore può più tranquillamente votare per il suo candidato preferito, anche se sa che non ha speranze di essere eletto, senza per questo sottrarre un voto al candidato che realisticamente preferisce fra quelli con maggiori possibilità di successo. Ad esempio nel caso delle elezioni francesi del 2002, gli elettori di sinistra avrebbero potuto votare sia per il proprio candidato preferito che per Jospin. Similmente, nelle elezioni presidenziali americane del 1999, gli elettori di Nader avrebbero potuto votare anche per il candidato democratico Gore, portando ad un ribaltamento dei risultati finali. Così facendo sarebbe stato possibile fare emergere il vero consenso goduto dai candidati di minoranza: costretti ad una scelta drastica, è infatti presumibile che molti elettori che avrebbero preferito ad esempio Chevenement, nelle elezioni francesi, o Nader in quelle americane, siano stati costretti a votare Jospin o Gore, nel timore che vincesse invece il candidato di destra, come è poi accaduto in entrambi i casi. Un altro punto interessante è che questo metodo in principio favorisce i candidati più forti, cioè quelli che godono di
un più ampio consenso, anche se non sempre sono la prima scelta per tutti gli elettori che li apprezzano.

Chiaramente un metodo di questo tipo non ha senso se il candidato da eleggere è più di uno. In questi casi la possibilità di votare per più candidati può portare all’esclusione dei candidati delle minoranze. Infatti, la maggioranza potrebbe facilmente assicurarsi tutti gli eletti.

Questo metodo è usato per l’elezione del Segretario Generale dell’O-nu, e viene usato per l’elezione delle cariche direttive in molte associazioni scientifiche.

4.3 Teoremi di impossibilità

Abbiamo finora esaminato dei metodi per aggregare un insieme di ordinamenti esprimenti le preferenze dei singoli elettori in un unico ordinamento che rappresenti al meglio le preferenze di tutti gli elettori. Abbiamo anche visto che nessuno dei metodi descritti, per quanto ragionevoli essi appaiano, porta a risultati del tutto soddisfacenti.

Poniamoci ora il problema di individuare le proprietà che dovrebbe avere un metodo di aggregazione per essere completamente soddisfacente. Il seguente insieme di proprietà appare abbastanza ragionevole:

Universalità Il metodo di aggregazione deve essere applicabile qualunque sia l’insieme degliordinamenti indicati dagli elettori; cioè si esclude la possibilità di imporre vincoli alle preferenze espresse dagli elettori. Abbiamo visto che, ad esempio, questo non è vero per il metodo di Condorcet che in certi casi non dà un vincitore.

Transitività Se nell’ordinamento aggregato risulta che il candidato a è preferito al candidato b e questo è preferito a c, allora nell’ordinamento anche a deve essere preferito a c. Come abbiamo già visto questa proprietà non è soddisfatta dal metodo di Condorcet che può dare origine a cicli: a preferito a b, b preferito a c e c preferito ad a.

Unanimità Se tutti i votanti preferiscono a a b, allora anche nell’ordinamento aggregato deve risultare a preferito a b.

Indipendenza La posizione relativa di due candidati nell’ordinamento aggregato dipenderà solamente dalle posizioni relative dei due candidati

2Nella descrizione dei metodi presentati abbiamo assunto, per semplicità, che gli ordinamenti fossero forti, cioè che non ci fossero situazioni di parità; è tuttavia facile estenderli al caso in cui un elettore possa porre nella stessa posizione a parimerito più candidati.
nei singoli ordinamenti, e non dalle posizioni degli altri candidati, che rispetto ai candidati in esame dovrebbero essere irrilevanti. Abbiamo già visto che né il metodo di Borda né quello delle votazioni successive soddisfa questa proprietà.

Non dittatura Il metodo non deve sistematicamente fornire un ordinamento che sia identico a quello fornito da un dato votante. Ciò non ci deve essere un votante che riesca ad imporre sempre la sua volontà agli altri.

Non manipolabilità Un elettore non può modificare l’esito dei risultati dell’elezione fornendo un ordinamento manipolato, cioè non corrispondente alle sue vere preferenze. Abbiamo visto attraverso un esempio che il metodo di Borda si presta proprio a manipolazioni, e che lo stesso accade per il metodo delle votazioni successive.

Queste proprietà appaiono tutte molto ragionevoli e sarebbe auspicabile che un metodo di aggregazione ben concepito le soddisfacesse tutte. I seguenti teoremi ci dicono che ciò non è possibile.

Teorema 4.1 (Arrow) Quando il numero di candidati è maggiore di 2, allora non esiste nessun metodo di aggregazione che soddisfi contemporaneamente le proprietà di universalità, unanimità, indipendenza e non dittatura.

Teorema 4.2 (Gibbard-Satterthwaite) Quando il numero di candidati è maggiore di 2, allora non esiste nessun metodo di aggregazione che soddisfi contemporaneamente le proprietà di universalità, non manipolabilità e non dittatura.

Mentre la proprietà di non manipolabilità sembra abbastanza ‘forte’, le altre cinque sono tutte relativamente ‘deboli’ e quindi apparentemente di facile realizzazione. Per questo il teorema di Arrow costituisce un risultato ‘negativo’ rilevante, che ci deve portare a guardare con un certo ‘disincanto’ il problema della determinazione del metodo elettorale ‘perfetto’.

Un metodo elettorale risponde a due funzioni: (i) arrivare ad una decisione e (ii) consentire a tutti i potenziali decisori di partecipare. La seconda di queste funzioni è non meno rilevante della prima; in questo senso un processo elettorale per quanto imperfetto è sempre preferibile ad una situazione in cui le decisioni vengono prese da un unico decisore (dittatura).

Un sistema elettorale di tipo maggioritario tende a privilegiare la prima funzione, mentre un sistema proporzionale puro tende a privilegiare piuttosto la seconda. Osserviamo che un sistema di quest’ultimo tipo tende in un
certo senso a posporre il momento decisionale: l’assemblea eletta col metodo proporzionale dovrà poi decidere su singoli punti, ed ogni volta si porrà il problema di come arrivare alla decisione finale.

4.4 Il metodo del consenso

Il votare implica una attenzione soprattutto all’esito, cioè alla decisione finale che verrà presa. Si prescinde completamente dal processo che ha portato alla decisione, concentrandosi solamente sulle modalità tecniche per tradurre le opinioni che le parti si sono formate (non importa come) in una unica decisione finale. Un approccio alternativo alle decisioni collettive è il cosiddetto metodo del consenso, in cui invece viene posta una notevole attenzione al processo che porta alla decisione, non inferiore a quella che viene posta sulla decisione stessa.

Nel metodo del consenso non può essere raggiunta alcuna decisione a meno che tutti i presenti non abbiano la deliberata volontà di accettarla. La decisione finale è il prodotto di uno sforzo di creatività compiuto da tutti, in cui la priorità è posta piuttosto sulla coesione e la stabilità del gruppo che sull’ansia di arrivare a delle veloci soluzioni e risposte.

Si parte dall’idea che il problema del singolo membro del gruppo è un problema di tutto il gruppo, e che tutti vadano ascoltati prima di arrivare alla decisione. Va osservato che, se le minoranze vengono ascoltate, non solo la decisione finale è spesso migliore di quella che la maggioranza potrebbe velocemente imporre, ma tale decisione ha più probabilità di ricevere un ampio supporto nel momento della sua attuazione.

Condizione essenziale affinché il consenso sia attuabile è che ogni singolo membro del gruppo si senta impegnato a farlo funzionare. È molto utile la presenza di un facilitatore del processo che sia deciso e imparziale.

La realizzazione del metodo del consenso richiede che si passi attraverso un certo numero di fasi successive, quali ad esempio quelle descritte di seguito\(^3\).

1. Definire e formulare in gruppo il problema da affrontare, cercando di mantenere separati problemi e persone che li sollevano.

2. Generare in gruppo possibili decisioni, scrivendole su un cartellone, dando spazio a domande di chiarimento.

\(^3\)Naturalmente non si tratta di regole rigide; diverse varianti possono essere utilizzate sulla base dell’esperienza e della realtà particolare del gruppo in cui si devono prendere le decisioni.
3. Discutere le proposte cercando di arrivare ad una lista contenente solamente quelle che si ritengono più significative.

4. Discutere i pro ed i contro di ciascuna proposta, garantendo a tutti la possibilità di contribuire alla discussione.

6. Verificare il consenso.

Perché si arrivi alla decisione è necessario il consenso di tutti, anche se non deve necessariamente trattarsi di un consenso pieno. Sono ad esempio accettabili atteggiamenti del tipo:

- **Neutralità:** *Non vedo la necessità di tale soluzione, ma la accetto.*

- **Riserve personali:** *Penso sia un errore o che non sia la migliore decisione, ma posso acconsentire.*

- **Mettersi da parte:** *Personalmente non posso mettere in pratica la decisione, ma non impedirò ad altri di farlo per tutto il gruppo.*

È esplicitamente previsto il diritto di veto, cioè chi non è d’accordo può bloccare la decisione. Naturalmente si tratta di un diritto che va esercitato con grande senso di responsabilità.

Da quanto detto risulta chiaro che si tratta di un metodo applicabile solamente in consensi relativamente limitati ed in cui ci sia una sostanziale coesione di fondo rispetto ai valori che stanno alla base del gruppo ed ai suoi obiettivi.
Capitolo 4. Votazioni
Capitolo 5

Valutazione di progetti

Un tipico problema che si pone in una grande varietà di situazioni è quello della scelta fra diverse alternative o progetti, cui allocare le limitate risorse disponibili. In casi di questo genere diventa essenziale disporre di strumenti metodologici che consentano di analizzare le alternative da diversi punti di vista e di valutarne i risultati previsti a fronte delle risorse da impiegarvi, allo scopo di scegliere la migliore o le migliori.

5.1 Analisi Costi Benefici

Per quanto si tratti di un approccio sempre più discusso (e spesso a ragione), tuttavia l’Analisi Costi Benefici (ACB) continua ad essere utilizzata; è bene pertanto conoscerla almeno nelle sue linee essenziali. Il suo limite maggiore, come vedremo, sta nella sua pretesa di misurare tutte le grandezze in termini monetari e quindi nella difficoltà di cogliere la varietà e diversità di elementi che entrano in gioco nella valutazione di un progetto.

5.1.1 Un investimento immobiliare

Per introdurre alcuni dei concetti fondamentali che stanno alla base della Analisi Costi Benefici, descriveremo un caso particolarmente semplice, che ha naturalmente un valore solamente didattico.

La Overseas Aid, una Ong che si occupa di cooperazione internazionale, sta valutando la possibilità e convenienza di acquistare la sede in cui si trovano i suoi uffici. Questo permetterebbe un lavoro di ristrutturazione necessario per una migliore funzionalità della sede stessa.

Il costo dell’immobile è di 300.000 euro, da pagare in una unica soluzione al momento dell’acquisto, mentre per la ristrutturazione si prevede una spesa
di 50.000 euro l’anno per tre anni, a partire dall’anno dell’acquisto. È possibile ottenere un mutuo da 150.000 euro, che potrà essere rimborsato in 15 anni con una rata annua fissa di 14.200 euro. Attualmente la Overseas Aid paga per l’affitto della sede 12.000 euro l’anno. L’acquisto permetterebbe di risparmiare questa somma; in realtà in considerazione delle tasse e delle spese di manutenzione straordinaria che ora non paga e che, una volta acquisita la proprietà dell’immobile, dovrà pagare, il risparmio netto annuo è ridotto ad 8.000 euro. Infine, da una analisi del mercato immobiliare si è ipotizzato che il valore presunto dell’immobile alla fine dei 15 anni sarà di 600.000 euro.

Nella tabella 5.1 vengono riportati, anno per anno, i costi ed i benefici dell’operazione e la loro differenza, cioè i benefici netti (quarta colonna).\footnote{Abbiamo assunto che l’acquisto venga fatto all’inizio del primo anno e che la prima rata del mutuo venga pagata alla fine dello stesso anno} Qui abbiamo deciso di effettuare l’analisi sull’orizzonte temporale di 15 anni, mettendo nel conto nell’ultimo anno il valore complessivo dell’immobile, ormai di proprietà totale della Overseas Aid\footnote{È come se, al fine di permettere un bilancio complessivo dell’operazione, si fosse immaginata la vendita dell’immobile da parte della Ong.}. Osserviamo che tali benefici netti possono essere sia positivi che negativi: in effetti nel nostro caso abbiamo un esborso netto di denaro per i primi 14 anni (benefici netti negativi), ed un ricavo nell’ultimo anno (beneficio positivo), quando viene messo nel conto il valore dell’immobile. La somma dei benefici netti, indicata nell’ultima riga, fa apparire un considerevole beneficio positivo alla fine dell’operazione. In questo modo però non abbiamo considerato che somme nominali uguali relative a diversi anni hanno un diverso valore effettivo. Assumendo che il tasso di interesse nel mercato dei capitali sia r, allora se prendo in prestito un euro oggi, dovrò restituire $1 + r$ euro fra un anno, ed $(1 + r)^k$ dopo k anni. Corrispondentemente, se mi aspetto di ricevere 1 euro fra un anno, posso prendere oggi in prestito $\frac{1}{1+r}$, e l’euro che riceverò mi permetterà di pagare il mio debito. Pertanto possiamo dire che 1 euro oggi corrisponde a $\frac{1}{1+r}$ fra un anno ed a $\frac{1}{(1+r)^k}$ fra k anni. Questo è ciò che viene chiamato *attualizzazione* (o anche tasso di sconto) ed r è il *tasso di attualizzazione*. Nell’ultima colonna abbiamo considerato i benefici netti attualizzati, avendo supposto $r = 0,03$. Se ora consideriamo il beneficio totale attualizzato osserviamo che è ancora positivo, ma l’operazione, pur essendo ancora conveniente, lo è molto di meno di quanto non apparisse inizialmente.

Osserviamo che in questi calcoli abbiamo fatto delle semplificazioni molto forti; ad esempio non abbiamo considerato i possibili aumenti di affitto cui andremmo incontro se decidessimo di non acquistare l’immobile, le variazioni del regime fiscale, e, soprattutto, la intrinseca variabilità del tasso r. Va
5.1. Analisi Costi Benefici

<table>
<thead>
<tr>
<th>Anno</th>
<th>Costi</th>
<th>Benefici</th>
<th>Benefici netti</th>
<th>Benefici attualizzati</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>214.200</td>
<td>8.000</td>
<td>-206.200</td>
<td>-206.200</td>
</tr>
<tr>
<td>2</td>
<td>64.200</td>
<td>8.000</td>
<td>-56.200</td>
<td>-54.563</td>
</tr>
<tr>
<td>3</td>
<td>64.200</td>
<td>8.000</td>
<td>-56.200</td>
<td>-52.974</td>
</tr>
<tr>
<td>4</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-5.674</td>
</tr>
<tr>
<td>5</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-5.509</td>
</tr>
<tr>
<td>6</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-5.348</td>
</tr>
<tr>
<td>7</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-5.192</td>
</tr>
<tr>
<td>8</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-5.041</td>
</tr>
<tr>
<td>9</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-4.894</td>
</tr>
<tr>
<td>10</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-4.752</td>
</tr>
<tr>
<td>11</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-4.613</td>
</tr>
<tr>
<td>12</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-4.479</td>
</tr>
<tr>
<td>13</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-4.349</td>
</tr>
<tr>
<td>14</td>
<td>14.200</td>
<td>8.000</td>
<td>-6.200</td>
<td>-4.222</td>
</tr>
<tr>
<td>15</td>
<td>14.200</td>
<td>608.000</td>
<td>593.800</td>
<td>392.572</td>
</tr>
</tbody>
</table>

| Beneficio totale | 207.000 | 24.762 |

Tabella 5.1. Piano investimenti

Osservato che alcune di queste semplificazioni sono meno forti di quanto non possa apparire: ad esempio se è vero che l'affitto aumenta nel tempo, è anche vero che lo stesso accade per le spese di manutenzione e per le tasse, e quindi è presumibile che il valore assoluto del risparmio vari poco nel tempo. Per quel che riguarda il tasso di sconto \(r \), può essere utile considerare diversi scenari, alcuni più pessimistici ed altri più ottimistici, ed analizzare i risultati ottenuti nelle diverse ipotesi. Inoltre, la decisione di considerare un orizzonte temporale pari a quello della restituzione del mutuo è arbitraria: avremmo potuto considerare orizzonti temporali diversi, ottenendo presumibilmente risultati diversi.

In generale, se il nostro orizzonte temporale è costituito dagli anni 0, 1, 2, \ldots, \(T \), allora il beneficio totale attualizzato, \(BTA \), di una operazione finanziaria del tipo di quella considerata è:

\[
BTA = \sum_{i=0}^{T} \frac{b(i) - c(i)}{(1 + r)^i},
\]

Dove \(b(i) \) è il beneficio nell’anno \(i \) e \(c(i) \) è il costo nell’anno \(i \).

La formula 5.1 consente di calcolare il beneficio totale attualizzato di una operazione finanziaria e può essere usato per decidere se realizzare o no l’operazione: l’operazione verrà realizzata se risulterà \(BTA > 0 \). Come già
osservato il risultato dipende dalle ipotesi semplificatrici fatte e dalla scelta dei parametri. Esistono nella letteratura finanziaria molteplici estensioni di questo modello che permettono di utilizzare ipotesi più realistiche. Tuttavia c’è una ipotesi fondamentale che sta dietro questo modello e che rende difficile il suo uso nella valutazione di progetti più complessi ed articolati di una operazione finanziaria: si tratta del fatto che per utilizzare la 5.1 è necessario che tutte le grandezze in gioco siano esprimibili in termini monetari, e quindi fra loro comparabili.

5.1.2 Estensione al caso di costi sociali

Cerchiamo ora di estendere la 5.1 al caso in cui i costi ed i benefici non siano tutti esprimibili per mezzo di grandezze monetarie e soprattutto che siano valutati non dal punto di vista di una singola azienda, ma dal punto di vista della società. Inoltre assumiamo che anche il tasso di attualizzazione sia scelto tenendo conto del punto di vista della società.

In generale i benefici ed i costi non saranno esprimibili con singoli numeri, ma piuttosto con vettori le cui componenti corrispondono ai diversi criteri attraverso cui valutarli. Sarà allora:

\[b(i) = (b_1(i), b_2(i), \ldots, b_n(i)), \]
\[c(i) = (c_1(i), c_2(i), \ldots, c_m(i)), \]

dove \(b(i) \) e \(c(i) \) sono rispettivamente i benefici ed i costi nel periodo \(i \), ed \(n \) è il numero dei criteri attraverso cui valutare i benefici mentre \(m \) è il numero dei criteri attraverso cui valutare i costi.

I costi ed i benefici sono qui costi e benefici sociali e quindi possono, almeno in principio, avere componenti con significati molto diversi fra di loro ed esprimibili con unità di misura diverse. Ciò che allora si fa nell’approccio della analisi costi-benefici è di rendere confrontabili le misure di tutte le diverse componenti convertendole in una unica unità di misura che, convenzionalmente, possiamo assumere sia di tipo monetario. In pratica si attribuisce, per ogni criterio \(j \) (\(j = 1, \ldots, n \)), ad ogni unità di beneficio sociale relativa a quel criterio, un prezzo \(p_j \); analogamente si attribuisce un prezzo unitario \(q_k \) ai costi sociali relativi al criterio \(k \), per \(k = 1, \ldots, m \).

Si possono allora esprimere sia i benefici sociali che i costi attraverso un unico numero, per ogni periodo di tempo \(i \):

\[\tilde{b}(i) = \sum_{j=1}^{n} p_j b_j(i), \]
\[\tilde{c}(i) = \sum_{j=1}^{m} q_j c_j(i). \]

Possiamo allora calcolare, analogamente a quanto fatto nel paragrafo precedente, il Beneficio Sociale Totale Attualizzato (BSTA):
5.1. Analisi Costi Benefici

\[BST_A = \frac{\sum_{i=0}^{T} \bar{b}(i) - \bar{c}(i)}{(1 + r)^i} = \frac{\sum_{i=0}^{T} \sum_{j=1}^{n} p_{j} b_{j}(i) - \sum_{k=1}^{m} q_{k} c_{k}(i)}{(1 + r)^i}. \]

Un progetto con \(BST_A > 0 \) sarà considerato accettabile perché complessivamente costituisce un beneficio per la società, e quindi da realizzarsi, in assenza di altri vincoli.

È facile rendersi conto che l’estensione ai benefici e costi sociali aggiunge ai problemi già visti nuovi e più gravi problemi.

Il primo problema riguarda la determinazione dei benefici e dei costi. La loro determinazione ha in sé un rilevante grado di arbitrarietà, ma soprattutto, dipende da quali degli attori sociali coinvolti la effettuano. Un qualsiasi progetto di intervento coinvolge un notevole numero di attori, alcuni dei quali potrebbero essere completamente all’oscuro del progetto. Ma tutti gli attori, sia pure in misure diverse e secondo diverse modalità, sentiranno l’impatto del progetto sulla propria vita. Ad esempio, l’apprezzamento dei benefici e dei costi sociali di una discarica di rifiuti urbani sarà molto diverso a seconda che si viva vicini o lontani dal sito della discarica, mentre la realizzazione di un nuovo tratto di strada può avere effetti inaspettati (positivi o negativi) sul traffico di zone i cui abitanti, al momento della discussione del progetto, non avevano alcuna coscienza che esso li avrebbe interessati.

Una volta misurati benefici e costi, assumendo che siano tutti esprimibili in modo quantitativo, resta il problema di definire i prezzi, cosa certamente non semplice e per certi versi rischiosa. Ciò porta a rendere comparabili criteri diversi e quindi la possibilità ad esempio di scambiare la diminuzione del beneficio ricavato da alcuni degli attori coinvolti con un aumento, di uguale valore monetario, del beneficio ricavato da un altro gruppo di attori, ovvero la pretesa di potere determinare una compensazione monetaria adeguata per i costi sociali subiti da alcuni degli attori.

Infine, come calcolare il tasso di attualizzazione \(r \)? Nel caso precedente esiste almeno un mercato finanziario in grado di fornire indicazioni, mercato che in questo caso manca.

Un’altro punto interessante è quello che riguarda le esternalità, che non compaiono direttamente in questo modello. Teniamo presente che spesso le esternalità si riferiscono a beni difficilmente riconducibili ad una misura monetaria.

C’è poi il problema della intrinseca linearità del modello di analisi costi benefici, mentre i fenomeni in natura sono spesso fortemente nonlineari. È ragionevole pensare che 10.000 incidenti mortali distinti, ciascuno con una sola vittima, siano equivalenti ad un incidente con 10.000 vittime? Pensiamo
Capitolo 5. Valutazione di progetti

al confronto fra i “normali” incidenti stradali ed un incidente nucleare tipo Cernobyl. Ad esempio un agente inquinante, superato un certo livello, può produrre effetti non reversibili: il costo monetarizzato di un incremento di questo agente sarà allora diverso a seconda del livello di partenza.

Ma alla fine il vero problema di fondo è la filosofia riduzionista che sta dietro questo approccio, il quale, anche se parte dalla considerazione esplicita di più criteri, li riconduce ad uno solo ed è essenzialmente un approccio monocriterio.

5.1.3 Tempo, tasso di attualizzazione e conflitti intergenerazionali

Abbiamo già accennato alla difficoltà di scegliere il tasso di attualizzazione. La cosa è già difficile quando si abbiano solo variabili finanziarie e si può fare ricorso ad informazioni derivate dal mercato finanziario. Questo è ad esempio il caso dell’investimento immobiliare visto prima. Noi conosciamo il rendimento del denaro oggi, ma fare ipotesi sul suo valore nel futuro comporta un notevole livello di arbitrarietà. Ancora maggiore è l’arbitrarietà a cui andiamo incontro quando abbiamo a che fare con variabili non direttamente quantificabili in termini monetari.

Consideriamo, ad esempio, il caso in cui una amministrazione locale debba decidere della destinazione di un terreno attualmente inutilizzato. Supponiamo siano stati presentati tre diversi progetti: l’Azienda Comunale dei Servizi Pubblici propone l’uso del terreno come discarica di residui dannosi, un costruttore propone di acquisirlo per costruirvi delle abitazioni, e una associazione ambientalista chiede che venga usato come parco. I risultati di un’analisi costi benefici effettuata dai tecnici del comune su un orizzonte temporale di 10 anni è riportata nella tabella 5.2, dove è stata usata per la quantificazione dei costi e dei benefici una unità di misura arbitraria (sono significativi i valori relativi piuttosto che quelli assoluti) e sono stati utilizzati tre diversi valori per r: 0.04, 0.06 e 0.08. Osserviamo che il primo progetto ha effetti benefici per soli 4 anni, dopo i quali la discarica viene saturata e non può essere più utilizzata. Gli effetti del secondo invece si esauriscono nel primo anno, quando la municipalità incassa il corrispettivo della vendita del terreno e dei contributi di urbanizzazione. Solamente il terzo progetto ha effetti che durano per tutto il periodo considerato.

Nella seconda parte della tabella sono riportati i valori di BTA per i diversi progetti ed i diversi tassi di attualizzazione. In grassetto è indicato il valore maggiore per ciascuno dei valori di r. Si vede che ciascuno dei progetti ha un valore di r in corrispondenza al quale risulta il migliore. Questo fatto
5.1 Analisi Costi Benefici

Tabella 5.2. Effetti del tasso di attualizzazione

<table>
<thead>
<tr>
<th>Anno</th>
<th>Discarica</th>
<th>Abitazioni</th>
<th>Parco</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.00</td>
<td>145.00</td>
<td>18.00</td>
</tr>
<tr>
<td>2</td>
<td>55.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>46.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
</tbody>
</table>

\[r = 0.04 \quad 143.03 \quad 139.42 \quad 146.00 \]
\[r = 0.06 \quad 137.19 \quad 136.79 \quad 132.48 \]
\[r = 0.08 \quad 131.73 \quad 134.26 \quad 120.78 \]

evidenza bene come variazioni anche limitate di \(r \) possono fare cambiare completamente il risultato dell’analisi.

Questo semplice esempio mette in evidenza un punto importante che è quello della equità intergenerazionale. Molti progetti producono effetti positivi o negativi che coinvolgono le generazioni future. Il tasso di attualizzazione è anche uno strumento per privilegiare i benefici immediati rispetto a quelli futuri a scapito della solidarietà intergenerazionale. Questo solleva un importante problema etico, anche perché le future generazioni non hanno la possibilità di fare sentire la propria voce nelle decisioni che vengono prese oggi.

Qualcuno ritiene che possa aiutare a realizzare una maggiore equità intergenerazionale il fatto che, ogni volta che si debba prendere una importante decisione pubblica, venga nominato un ‘portavoce’ delle generazioni future con un ruolo nel processo decisionale.

5.1.4 Monetizzazione delle grandezze e benefici non tangibili

In molti progetti ci si trova di fronte a benefici e costi difficilmente esprimibili in termini monetari, o comunque con una unica unità di misura. Questo è particolarmente vero in progetti orientati allo sviluppo nei paesi del terzo mondo. Che valore dare ad esempio a bellezze di tipo paesaggistico-ambientale? Quale è il costo della scomparsa di una specie naturale?
Fra le grandezze difficilmente esprimibili in termini monetari particolare rilievo ha la vita umana, che in molti casi (ad esempio progetti sanitari o progetti comportanti rischi) è una dei fattori rilevanti nell’analisi costi benefici. In Bouyssou et al. (2000) si riporta il caso dell’analisi costi benefici applicata a progetti riguardanti il trasporto pubblico. In questo caso un intervento può ridurre il numero di incidenti mortali e quindi può portare a salvare vite umane. Ad esempio l’ampliamento di un tratta di autostrada può migliorarne la sicurezza, oppure la realizzazione di una nuova linea metropolitana può portare alla riduzione del traffico privato e quindi degli incidenti. In questi progetti si cerca spesso di quantificare il ‘valore’ o ‘costo’ delle vite umane, con risultati però sempre caratterizzati da un elevato livello di arbitrarietà. Nell’opera citata viene riportata a pag. 84 una tabella contenente i valori tipici dati alla vita umana in diversi paesi dell’unione Europea espressi in ECU del 1993:

<table>
<thead>
<tr>
<th>Paese</th>
<th>Costo della vita umana ECU 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danimarca</td>
<td>628.147</td>
</tr>
<tr>
<td>Finlandia</td>
<td>1.414.200</td>
</tr>
<tr>
<td>Francia</td>
<td>600.000</td>
</tr>
<tr>
<td>Germania</td>
<td>406.672</td>
</tr>
<tr>
<td>Portogallo</td>
<td>78.230</td>
</tr>
<tr>
<td>Spagna</td>
<td>100.529</td>
</tr>
<tr>
<td>Svezia</td>
<td>984.940</td>
</tr>
<tr>
<td>U.K.</td>
<td>935.149</td>
</tr>
</tbody>
</table>

In uno studio riguardante l’analisi costi benefici di interventi di smineimento in Etiopia ed in Eritrea (Litzelman, 2002) viene scelto come costo della vita umana il reddito procapite relativo al 1998, cioè 550 dollari per il primo paese e 660 dollari per il secondo.

Come si vede si finisce per attribuire valori molto diversi della vita umana a secondo dei paesi. Tali valori diventano particolarmente bassi per i paesi poveri. Tutto ciò non può non sollevare problemi di tipo etico. Sarebbe certamente preferibile evitare di attribuire un costo o prezzo alla vita umana, e piuttosto usare misure di efficacia degli interventi del tipo ‘numero di vite salvate per unità di investimento’. Misure di questo tipo permetterebbero il confronto tra diverse alternative e sarebbero più neutrali sul piano dei valori.

Ci sono poi benefici o costi non tangibili ai quali è comunque impossibile attribuire un costo in modo sensato. Ad esempio un progetto può attraverso il

Reparto - Analisi Costi Benefici

5.1. Analisi Costi Benefici

coinvolgimento della popolazione locale contribuire alla crescita della società civile in una certa area. Quale valore dare a questo elemento che, per quanto importantissimo, sfugge ad una misurazione in termini monetari o comunque di tipo quantitativo?

5.1.5 Trasparenza

La necessità di arrivare ad un singolo numero che esprima il valore del progetto, comporta, nel caso di progetti complessi, l’utilizzo di rilevanti quantità di dati, non tutti dotati della stessa affidabilità e credibilità. Alcuni di essi sono relati a grandezze difficilmente esprimibili in termini monetari; altri fanno riferimento a grandezze relative al futuro e la cui misura è soggetta ad un notevole grado di incertezza (ad esempio il numero di persone che utilizzeranno fra 5 anni un ospedale, oppure il numero di tonnellate di soia che i contadini di una cooperativa potranno vendere di qui a due anni). Il mettere insieme dati con queste caratteristiche così diverse, producendo alla fine un singolo numero, porta a modelli poco trasparenti e quindi poco convincenti. Il mantenere separate grandezze con diverso grado di affidabilità o di oggettività renderebbe l’analisi più trasparente e quindi più accettabile dalle parti interessate.

Un’altra way molto importante «nella corrente pratica dell’analisi costi-benefici è che essa sopprime l’informazione che è più critica per i processi decisionali democratici. Il fatto che i benefici ed i costi di intraprese governative non siano distribuiti equamente sulla popolazione coinvolta, ma che alcune delle persone coinvolte ne traggano beneficio a spese di altre, è un elemento centrale della politica. E tuttavia la distribuzione dei benefici e dei costi è deliberatamente nascosta negli studi costi-benefici, che si concentrano nel confrontare i benefici aggregati con i costi aggregati, “indipendentemente da chi ne traggia vantaggio”.

Poiché questa informazione omessa è di interesse primario per il legislatore e per gli organi di governo responsabili, essi dovranno trovarla altrove, e finiranno probabilmente per basare le proprie decisioni sulle stime che provvederanno a fornire piuttosto che sulla risposta ai costi-benefici. Così l’analisi costi-benefici diventa un esercizio di passaggio di carte largamente irrillevante, mentre i responsabili basano la loro decisione su stime ed analisi fornite spesso dalle parti interessate»(Dorfman, 1996).

5.1.6 Analisi Costi Efficacia

Una variante dell’analisi costi benefici è la cosiddetta Analisi Costi Efficacia (cost effectiveness analysis). In questo approccio ai benefici non viene attri-
Capitolo 5. Valutazione di progetti

buito un valore monetario, ma essi vengono espressi attraverso le loro unità fisiche di misura: numero di incidenti mortali evitati, numero di morti dovuti allo scoppio di mine evitati, etc.

Nella analisi costi-efficacia si mettono in relazione i costi con una misura della quantità fisica dei benefici ottenuti, il numero dei benefici. In particolare il rapporto tra il costo totale e numero dei benefici ottenuti fornisce un costo unitario per beneficio. Se i benefici sono di un solo tipo e quindi rappresentabili per mezzo di un unico numero, si ottiene un ordinamento delle alternative e si può allora scegliere il programma con il minimo costo unitario per beneficio. Un settore in cui la analisi costi efficacia viene usata frequentemente è quello sanitario, proprio per la difficoltà di assegnare valori monetari a beni quali la salute. Un tipico caso in cui si usa l’analisi costi efficacia è quello in cui si è deciso un intervento, ma si vuole trovare l’alternativa meno costosa per effettuarlo. Ad esempio nel caso in cui si voglia allocare un budget limitato a programmi di sminamento e si debba scegliere fra più metodi alternativi con cui effettuare l’intervento, si sceglierebbe l’intervento che ha un costo per morte da mina evitata minimo.

Naturalmente questo approccio diventa difficilmente applicabile nel caso si abbiano benefici di tipo diverso non riconducibili ad una unica unità di misura. In questo caso non si riesce ad ottenere un ordinamento delle alternative; risulta quindi difficile effettuare la scelta.

Questo approccio si presenta in diverse varianti; ne presenteremo di seguito due, facendo riferimento ad un programma di sminamento in una regione definita.

La prima variante consiste nel confrontare direttamente i costi totali del programma con i vantaggi ottenuti. Indicando con C_{tot} il costo totale e con N il numero di morti evitate, si può allora calcolare la efficacia rispetto ai costi (Cost Effectiveness), CE_1:

$$CE_1 = \frac{C_{\text{tot}}}{N}.$$ (5.3)

Questa variante non tiene conto del fatto che il programma fornisce anche dei benefici economici che devono essere presi in considerazione. Ad esempio coloro che subiscono una mutilazione a causa dello scoppio di una mina dovranno essere curati e poi si dovrà fornirli di protesi. Ciò comporta un costo per il sistema sanitario e quindi l’uso di risorse che potrebbero essere utilizzate altrimenti. Il programma di sminamento porta ad una riduzione di questo costo. Inoltre lo sminamento di un campo consente poi il suo uso

4Si potrebbe anche aggiungere il numero di gravi mutilazioni evitate, eventualmente dando loro un peso diverso ed effettuando una somma pesata.
per scopi agricoli, con un beneficio per l’economia locale. Si può allora usare, al posto del costo totale, il costo netto, C_{netto}, cioè la differenza fra il costo totale ed il beneficio economico dell’intervento, B_{econ}:

$$C_{\text{netto}} = C_{\text{tot}} - B_{\text{econ}}.$$

Il beneficio economico dell’intervento ha due componenti principali, il risparmio diretto dovuto all’intervento (il costo delle cure riabilitative e delle protesi che viene risparmiato), C_{cure}, e il reddito dovuto all’incremento di produttività nella zona interessata, C_{prod}, che si ottiene come conseguenza dell’intervento. Abbiamo allora:

$$C_{\text{netto}} = C_{\text{tot}} - (C_{\text{cure}} + C_{\text{prod}}).$$

Possiamo così ottenere una seconda, più accurata, misura di efficacia rispetto ai costi:

$$CE_2 = \frac{C_{\text{netto}}}{N}. \quad (5.4)$$

Va osservato che l’aver inserito anche l’aumento di produttività, pur risultando in una misura di efficacia più completa e ricca di informazione, può portare a delle distorsioni, ad esempio favorendo gli interventi diretti a quei segmenti della popolazione che sono considerati più produttivi in termini di reddito (ad esempio in certi contesti culturali, gli uomini rispetto alle donne). Si può anche osservare che l’uso dei costi netti ci riporta all’analisi costi benefici standard da cui eravamo partiti, con l’unica differenza che, dividendo per N, si ha un costo netto pro capite piuttosto che un costo netto totale, e che non siamo costretti (almeno non esplicitamente) a dare un valore economico alla vita umana. Abbiamo invece espresso in termini economici altri benefici quali ad esempio la riduzione in numero di invalidità.

5.2 Analisi multicriteria

Il termine *analisi multicriteria* indica una ampia classe di metodi per la valutazione e la scelta tra diverse alternative nei quali si cerca di tenere in considerazione in modo esplicito la molteplicità delle dimensioni del problema decisionale, senza tentare di ricondurre i diversi criteri ad uno solo come avviene ad esempio nell’analisi costi benefici.

Cominciamo con il descrivere in modo ‘formale’ il tipo di problemi che considereremo. Supponiamo innanzitutto di avere n alternative, che possiamo indicare o con gli interi $1, 2, \ldots, n$, oppure con le lettere a, b, \ldots. Ciascuna
Capitolo 5. Valutazione di progetti

Alternativa viene valutata sulla base di \(m \) criteri. Indichiamo con \(g_i(a) \) il valore che viene attribuito all’alternativa \(a \) sulla base del criterio \(i \). Assumiamo che \(g_i(a) \) sia, per ogni \(i \), una funzione reale: ad esempio, se \(a \) è un possibile candidato per la gestione in loco di un progetto di cooperazione, e il criterio \(i \) è la conoscenza o meno della lingua francese, allora potremmo porre \(g_i(a)=1 \) se il candidato \(a \) conosce il francese, e \(g_i(a)=0 \) altrimenti. Se invece il criterio si riferisse al numero di anni di esperienza in posizione analoga, allora \(g_i(a) \) sarà un intero pari al numero di anni di esperienza. Infine, se \(a \) è una ditta cui affidare il trasporto di container contenenti attrezzature per un intervento, ed \(i \) corrisponde al costo per container e per km, allora \(g_i(a) \) sarà la tariffa proposta dalla ditta in dollari oppure in euro.

Chiaramente ogni criterio \(i \) induce sull’insieme dei candidati una relazione di ordine che indicheremo con il simbolo “\(\succ \)”: diremo che \(a \succ_i b \) se, sulla base del criterio \(i \), \(a \) risulta preferibile o equivalente a \(b \). In formule avremo che

\[
g_i(a) \geq g_i(b) \Rightarrow a \succ_i b,
\]

se il criterio \(i \) è tale che a valutazioni migliori corrispondono valori più alti, come nel caso degli anni di esperienza, e

\[
g_i(a) \leq g_i(b) \Rightarrow a \succ_i b,
\]

se invece a valutazioni migliori corrispondono valori più bassi della funzione \(g_i(\cdot) \), come nel caso del costo di trasporto.

Osserviamo come si tratti di un ‘ordine debole’, infatti è possibile che sia allo stesso tempo \(a \succ_i b \) e \(b \succ_i a \), cioè che le alternative \(a \) e \(b \) siano equivalenti.

I problemi nascono dal fatto che di questi ordinamenti ce ne sono uno per ogni criterio e che questi ordinamenti sono in generale fra loro molto diversi. Come fare ad arrivare ad una scelta in una situazione di questo tipo? In realtà qualsiasi metodo che pretendesse di automatizzare il processo decisionale ci costrenerbbe a ridurlo ad una sola le molteplici dimensioni dei problemi reali, e quasi certamente porterebbe al fallimento. Qui ci proponiamo di seguire nella costruzione di algoritmi di supporto al processo decisionale il seguente principio generale:

un metodo di valutazione non va mai inteso come un algoritmo che fornisca automaticamente la soluzione voluta, quanto piuttosto come un aiuto che permetta una analisi sistematica delle alternative e che guidi il decisore verso la decisione, di cui avrà comunque tutta la responsabilità.
5.2. Analisi multicriteria

<table>
<thead>
<tr>
<th>Caratteristiche fisiche</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie (mq/1000)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Altezza (m)</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Numero porte per carico/scarico</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pensilina</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>S`ı</td>
<td>No</td>
</tr>
<tr>
<td>Banchina</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>S`ı</td>
<td>No</td>
</tr>
<tr>
<td>Capienza piazzale (n. automezzi)</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Scaffalature</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Illuminazione interna diurna</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
</tr>
<tr>
<td>Illuminazione interna notturna</td>
<td>No</td>
<td>No</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Servizi</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elettricità, acqua, gabinetti</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
<td>S`ı</td>
</tr>
<tr>
<td>Linee telefoniche</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ufficio (mq)</td>
<td>25</td>
<td>40</td>
<td>100</td>
<td>50</td>
<td>15</td>
</tr>
</tbody>
</table>

| Costo | Indice del costo mensile | 110 | 100 | 100 | 105 | 110 |

Tabella 5.3. Caratteristiche dei magazzini

Nel seguito presenteremo alcuni metodi per guidare il decisore o i decisori ad una scelta, e lo faremo usando il semplice esempio che viene descritto nel seguente paragrafo.\(^5\)

5.2.1 Un problema di scelta

Nell’ambito di un intervento internazionale in una situazione di emergenza, la *Overseas Aid* è incaricata di gestire la logistica della distribuzione degli aiuti in una specifica area. L’incaricato della Ong, arrivato sul luogo, si trova di fronte al problema di approntare un magazzino adeguato al flusso di merci, soprattutto medicinali e cibo. Dopo una breve indagine, individua 5 possibili magazzini che potrebbero essere affittati. Nella tabella 5.3 sono messe a confronto le caratteristiche dei magazzini, che abbiamo indicato con le lettere a, b, c, d ed e.

Ci troviamo in questo esempio di fronte a 22 criteri diversi. Definiamo innanzitutto le funzioni \(g_i(.)\) sostituendo ai S`ı degli 1, ed ai No degli 0. Osserviamo poi che un certo numero di caratteristiche sono tali che non

\(^5\)Si tratta di un esempio per il quale sono stati utilizzati dati forniti da Gianni Dinale.
Tabella 5.4. Alternative e criteri

discriminano fra le diverse opzioni. Ad esempio nessuno dei cinque magazzini ha un sistema antincendio, mentre tutti hanno illuminazione interna diurna e servizi (elettricità, acqua, gabinetti). Analizzando la tabella si vede che i criteri importanti, perché differenziano i magazzini tra di loro, sono solamente 16. Si ha quindi la tabella 5.4 dalla quale possiamo partire per l’analisi.

È immediato verificare che i diversi criteri inducono ordinamenti fra le alternative anche molto diversi fra loro. Ad esempio per il criterio 7 abbiamo

\[c \succ_7 e \succ_7 \left\{ \begin{array}{c} a \\ b \end{array} \right\} \succ_7 d, \]

dove \(a \) e \(b \) sono equivalenti dal punto di vista di questo criterio, mentre se consideriamo il criterio 12 si ha:

\[e \succ_{12} d \succ_{12} c \succ_{12} b \succ_{12} a. \]

5.2.2 Un approccio alla Condorcet

L’approccio che descriveremo si richiama al metodo di votazione secondo Condorcet che abbiamo già visto. Lì venivano confrontati tutti i candidati a due a due, in una sorta di torneo in cui ciascuno affronta a turno tutti gli altri. In ogni coppia vinceva il candidato che otteneva la maggioranza dei voti. Un candidato che avesse vinto con tutti gli altri sarebbe stato considerato vincitore, il vincitore secondo Condorcet. Potremmo definire in
5.2. Analisi multicriteria

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>16</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>b</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>d</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>e</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabella 5.5. Numero di criteri secondo cui ciascun magazzino è non peggiore di ciascun altro

modo analogo un perdente secondo Condorcet, cioè quell’alternativa che viene sconfitta nei confronti da tutte le altre.

In questo approccio si considerano tutti i criteri come ugualmente importanti (cioè tutti con lo stesso peso) e si confrontano a due a due le alternative, considerando il numero di criteri in cui ciascuna delle due è superiore o equivalente all’altra. Se \((x, y)\) è la coppia di alternative che stiamo esaminando, indichiamo con \(n(x, y)\) il numero di criteri secondo cui \(x\) è migliore o equivalente a \(y\) e con \(n(y, x)\) il numero di criteri secondo cui \(y\) è migliore o equivalente a \(x\) \(^6\). Fissiamo poi una soglia \(s \geq \frac{n}{2} + 1\), e diciamo che \(x\) è preferito ad \(y\) se \(n(x, y) \geq s\), e analogamente che \(y\) è preferito ad \(x\) se \(n(y, x) \geq s\). Osserviamo che può accadere che sia allo stesso tempo \(x\) preferito a \(y\) ed \(y\) preferito a \(x\). La relazione così costruita ci permetterà di individuare alternative da scartare, portandoci iterativamente a ridurre il loro numero, fino ad ottenere un insieme di alternative sufficientemente limitato da permettere una più facile scelta.

Vediamo ora come si procede nell’esempio dei magazzini. Nella tabella 5.5 vengono indicati per ogni coppia di magazzini, \((x, y)\), il numero di criteri per cui \(x\) è altrettanto buono o migliore di \(y\). Tale numero si trova nell’incrocio tra la riga corrispondente ad \(x\) e quella corrispondente ad \(y\).

Analizzando la tabella 5.5 osserviamo che ci sono casi in cui un magazzino appare chiaramente superiore ad un altro e casi in cui è più difficile trarre delle conclusioni chiare. Ad esempio secondo 14 criteri su 16 il magazzino \(c\) è migliore o non peggiore di \(a\), mentre quest’ultimo risulta superiore o pari a \(c\) secondo solamente 6 criteri. Non si rischia molto affermando allora che \(c\) è preferibile ad \(a\). Meno chiara è invece la situazione se consideriamo la coppia \((d, e)\); infatti in questo caso \(d\) è non peggiore di \(e\) secondo 12 criteri, mentre \(e\) è non peggiore di \(d\) secondo 10 criteri. Ricordiamo poi che, eseguendo confronti a due a due, come già abbiamo visto nel caso del metodo di voto

\(^6\)Naturalmente sarà \(n(x, y) + n(y, x) \geq n\), dove ricordiamo che \(n\) è il numero totale dei criteri.
Capitolo 5. Valutazione di progetti

Tabella 5.6. Tabella delle preferenze iniziale

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

secondo Condorcet, è possibile che si abbiano cicli, cioè che una alternativa risulti preferibile ad una seconda, questa a sua volta sia preferibile ad una terza che risulta poi preferibile alla prima realizzando un ciclo.

Ricordiamo che in questo modo abbiamo assunto che tutti i criteri abbiano lo stesso peso. Questo in realtà non è vero, per cui è bene usare un criterio di prudenza nel decidere quando tra due alternative una sia preferibile all'altra: non basta che l'una superi magari di poco l'altra per preferirla. Scegliamo allora una soglia s abbastanza alta, ad esempio almeno pari ai $2/3$ del numero totale di criteri rilevanti. Questo significa nel nostro caso 11 criteri ($s = 11$). Le preferenze risultanti sono riportate nella tabella 5.6 dove in posizione (x, y) c'è un 1 se x è preferito a y e 0 altrimenti (x non risulta preferito ad y).

Osserviamo che si può avere il caso in cui x è preferito a y ed allo stesso tempo y è preferito a x. Questo è ad esempio il caso della coppia (c, d).

Analizzando la tabella 5.6 possiamo osservare che il magazzino a non è preferito a nessuno (prima riga con tutti gli elementi nulli escluso quello sulla diagonale), mentre tutti gli altri magazzini sono ad esso preferiti (prima colonna tutta di 1). Sembra allora ragionevole scartare questo magazzino e concentrarsi sugli altri.

A questo punto abbiamo un nuovo problema di scelta con 4 alternative e 13 criteri significativi. Infatti, una volta eliminata l’alternativa a, i criteri ‘umidità’, ‘polvere’ e ‘basso rischio di incendio’ cessano di essere discriminanti e quindi significativi. Essendo 13 i criteri significativi, mantenendo lo stesso criterio dei $2/3$, avremo che ci vorrà la prevalenza o l’equivalenza in almeno 9 criteri perché una alternativa venga preferita ad un’altra. Otteniamo allora la nuova tabella 5.7.

Ripetendo il ragionamento fatto prima, possiamo scartare l’alternativa b, e passare così ad una terza fase in cui si hanno solamente tre alternative, c, d ed e. Ripetendo lo stesso ragionamento fatto prima ed osservando che ora il numero di criteri significativi è di 11, che comporta una soglia di 8 per costruire la relazione di precedenza, si ha la tabella 5.8.

A questo punto, se applicassimo la regola di esclusione che abbiamo usato
finora, scarteremmo le alternative d ed e, e sceglieremmo quindi il magazzino c. Tuttavia in questo caso la dominanza di una alternativa sulle altre non è così forte da giustificare una applicazione meccanica della regola di esclusione. È forse preferibile, a questo punto, analizzare le caratteristiche dei tre magazzini rimasti, discutendone con le persone coinvolte nella gestione, per arrivare ad una soluzione finale. Possiamo pensare alla procedura che abbiamo descritto come ad un metodo per ridurre il numero delle alternative, eliminando quelle meno interessanti, fino ad arrivare ad un insieme sufficientemente piccolo da consentire una più facile scelta.

Ad esempio nel caso in questione potremmo arrivare alla conclusione che, mentre le differenze in prezzo ed in dimensione fra c ed e sono molto piccole, e praticamente irrilevanti, la disponibilità di illuminazione esterna e di un piazzale molto ampio sono vantaggi rilevanti che possono spingere a scegliere e malgrado nella tabella 5.8 risulti che c è preferito a e.

Nell’approccio fin qui descritto abbiamo assunto che tutti i criteri fossero rilevanti ai fini della scelta. Questo implica che non ci sia un criterio capace da solo di determinare l’ordinamento delle alternative, cioè ad esempio un criterio tale che se x è preferibile ad y secondo tale criterio, allora certamente x è preferibile ad y. In quest’ultimo caso basterebbe eliminare subito tutte le alternative che sono peggiori rispetto a questo criterio e analizzare le rimanenti solamente sulla base degli altri criteri. Inoltre, e questo è un aspetto molto critico, per quei criteri misurabili in una qualche scala numerica, nel confronto tra due alternative abbiamo tenuto conto solamente del fatto qualitativo che una delle due fosse migliore dell’altra, ma non di quanto fosse effettivamente migliore. Per cui, ad esempio, nel caso considerato, l’alternativa c risultava vincente sia rispetto alla b che alla e per quel che riguardava
la superficie; il fatto che nel primo caso la differenza fosse di 1000 mq e nel secondo di soli 200 mq era irrilevante. Nel prossimo paragrafo descriveremo un approccio in cui si tiene conto dei pesi relativi dei diversi criteri. Il problema della quantificazione delle caratteristiche delle alternative sarà affrontato successivamente.

5.2.3 Il metodo **ELECTRE**

Il metodo **ELECTRE** (*ELimination Et Chois* Traduisant la *REalité*) è in realtà una intera famiglia di metodi il cui sviluppo è legato al nome di Bernard Roy. Qui ci limiteremo a presentare la versione più semplice di questo tipo di approccio, e lo faremo continuando a servirci dell’esempio del problema magazzino visto prima.

Innanzitutto si danno dei pesi ai diversi criteri, pesi che tengono conto della rilevanza relativa dei criteri. Questo rende più realistico l’approccio e più significativi i risultati raggiunti. I pesi vengono normalizzati, cioè la loro somma è uguale all’unità. Riscriviamo la tabella 5.4, aggiungendo una colonna con i pesi dei criteri.

L’assegnazione dei pesi ai criteri è un problema non banale che verrà affrontato nel seguito. Qui ci limitiamo ad assumere che i pesi siano stati determinati sulla base dell’esperienza del decisore, eventualmente dopo avere consultato degli esperti. Ad esempio, l’umidità e la polvere sono problemi di non facile soluzione, che rischiano di danneggiare il materiale che dovrà

<table>
<thead>
<tr>
<th>i</th>
<th>Pesi</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.07</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.09</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.09</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.03</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>0.09</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.09</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>0.06</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0.09</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>0.03</td>
<td>25</td>
<td>40</td>
<td>100</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>0.06</td>
<td>110</td>
<td>100</td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
</tbody>
</table>

Tabella 5.9. *Alternative e criteri*

L’assegnazione dei pesi ai criteri è un problema non banale che verrà affrontato nel seguito. Qui ci limitiamo ad assumere che i pesi siano stati determinati sulla base dell’esperienza del decisore, eventualmente dopo avere consultato degli esperti. Ad esempio, l’umidità e la polvere sono problemi di non facile soluzione, che rischiano di danneggiare il materiale che dovrà
essere immagazzinato, mentre è molto più facile evitare l’accesso a topi ed uccelli. Così, il fatto che il piazzale possa ricevere un numero rilevante di automessi è molto più importante dell’esistenza o meno di una pensilina, che pure è utile nelle operazioni di carico e scarico.

Definiamo ora un indice di preferibilità, \(c(x, y) \), che per ogni coppia \((x, y)\) fornisce il peso totale dei criteri secondo cui \(x\) è preferibile a \(y\):

\[
c(x, y) = \sum_{i : x \succ_i y} p_i,
\]

(5.5)
dove con \(p_i\) abbiamo indicato il peso del criterio \(i\). Il calcolo degli indici di preferibilità ci dà la seguente tabella:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>0.48</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(b)</td>
<td>0.79</td>
<td>1</td>
<td>0.61</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>(c)</td>
<td>0.91</td>
<td>0.91</td>
<td>1</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>(d)</td>
<td>0.82</td>
<td>0.73</td>
<td>0.79</td>
<td>1</td>
<td>0.67</td>
</tr>
<tr>
<td>(e)</td>
<td>0.91</td>
<td>0.88</td>
<td>0.76</td>
<td>0.76</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 5.10. Indici di preferibilità

Dalla tabella degli indici possiamo ricavare una relazione di preferenza, \(\succ\), definita come segue:

\[x \succ y \text{ se e solo se } c(x, y) \geq s\]
dove \(s\) è una soglia prefissata che chiameremo soglia di preferibilità. Scegliendo \(s = 2/3\) si ottiene la seguente tabella, dove l’elemento \((x, y)\) è 1 se \(x \succ y\) e 0 altrimenti.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(d)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(e)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 5.11. Relazione di preferenza

Osserviamo che qui i pesi sono assegnati sulla base del “tutto o niente”. Ciò è una volta che, per un dato criterio \(i\), \(x\) risulta preferibile a \(y\), tutto il peso di quel criterio gioca in favore di \(x\) indipendentemente dal fatto che \(g_i(x)\) e \(g_i(y)\) abbiano valori tra loro molto simili o molto lontani.
Figura 5.1. Rappresentazione grafica della relazione di preferenza della tabella 5.11

La relazione descritta nella tabella 5.11 può essere rappresentata in forma grafica per mezzo del grafo di figura 5.1, dove fra due nodi c’è un arco non orientato se i due nodi rappresentano alternative equivalenti, cioè tali che la relazione di preferenza vale nei due sensi.

Dall’esame del grafo 5.1 si evince chiaramente che le alternative \(a\) e \(b\) appaiono dominate dalle altre che invece risultano tra loro equivalenti. Il metodo Electre in questo caso fornisce allora l’insieme delle alternative \(c\), \(d\) e \(e\), come l’insieme su cui restringere la scelta. Si tratta cioè di un metodo che non pretende di fornire la scelta finale, ma piuttosto che si propone di eliminare in modo ‘automatico’ le alternative chiaramente inferiori, lasciando poi al decisore la scelta finale. Le alternative scelte hanno la caratteristica che nessuna di esse è preferita ad una delle altre scelte (tranne che non sia ad essa equivalente), mentre per ognuna delle alternative scartate ce n’è almeno una di quelle scelte che è ad essa preferita. Un sottoinsieme di alternative che ha questa proprietà è detto nucleo del grafo rappresentante la relazione.

Formalizziamo ora meglio questo metodo definendone i passi principali.

1. *Si assegnano i pesi ai diversi criteri.* La scelta dei pesi è ovviamente una parte critica della procedura. Una scelta sbagliata può portare a risultati privi di senso, anche perché, come già abbiamo osservato, qui i pesi entrano in gioco secondo la logica del ‘tutto o niente’. Innanzitutto è consigliabile usare dei pesi normalizzati, cioè pesi positivi a somma 1; questo permette più facilmente di confrontarli e di accorgersi di situazioni anomale. Ad esempio se un criterio dovesse avere un peso ≥ 0.5, si avrebbe una situazione in cui la relazione di precedenza risulterebbe dipendente sostanzialmente da un solo criterio, cosa poco accettabile. Analogamente si potrebbe avere una situazione in cui un ristretto sottoinsieme di criteri avesse un peso cumulato così alto
da rendere ininfluenti gli altri criteri, e non è detto che sia ciò che il decisore vuole.

Sono state messe a punto delle metodologie appropriate per la determinazione dei pesi. Qui ci limitiamo a dire che è opportuno che in tale fase vengano consultati tutti coloro che in un modo o nell’altro sono interessati alla decisione o possono venire toccati dalle conseguenze delle scelte fatte. Infine il processo di determinazione dei pesi può essere pensato come un processo iterativo: alla luce dei risultati può essere opportuno un riesame dei pesi scelti inizialmente.

2. **Si determinano gli indici di preferibilità ed i casi di veto.** Per il calcolo degli indici di preferibilità si fa ricorso, come abbiamo già visto, alla 5.5. Teniamo però presente che in questo approccio, proprio per la logica del ‘tutto o niente’ usata, si possono creare delle situazioni anomale. Ad esempio è possibile che per una coppia \((x, y)\) la maggior parte dei criteri giochi a favore di \(x\), ma ci sia un criterio \(i\) per il quale risulti \(g_i(x) \ll g_i(y)\), cioè la differenza per quel criterio è molto alta a favore di \(y\). Questo può essere sufficiente a farci dire che comunque non si può preferire \(x\) ad \(y\) anche se \(c(x, y)\) è a favore di \(x\). Si parla allora di situazioni di veto, e l’insieme di veto, \(V\), è l’insieme di tutte le coppie per cui è stata riconosciuta una situazione di veto.

3. **Si sceglie la soglia di preferibilità.** Ricordando che i pesi sono stati normalizzati, abbiamo che la soglia \(s\) sarà un numero compreso fra .5 ed 1. La scelta del valore è critica. Un valore troppo vicino a .5 rischierebbe di discriminare troppo poco: avremmo un grafo finale con troppi archi e quindi con molti cicli cioè con consistenti sottoinsiemi di alternative equivalenti. Dall’altra parte, un valore troppo alto, cioè vicino ad 1, darebbe una relazione troppo povera (pochi archi nel grafo) ed anche qui ci permetterebbe poco di discriminare tra le alternative. In entrambi i casi il problema è il potere discriminante della relazione, da un lato per il grande numero di alternative equivalenti, dall’altro per il grande numero di alternative che non vengono scartate perché troppo piccolo il numero di quelle che sono a loro preferite dalla relazione.

4. **Si costruisce il grafo di preferibilità.** La costruzione del grafo di preferibilità è leggermente più sofisticata di quanto visto nell’esempio dei magazzini. Innanzitutto viene costruito un grafo di partenza \(G = (N, A)\), dove \(N\), l’insieme dei nodi, è l’insieme delle alternative (ad ogni nodo corrisponde una alternativa) ed esiste un arco fra il nodo \(x\) ed il nodo \(y\) se e solo se \(x > y\), cioè se \(x\) è preferita a \(y\), e \((x, y) \notin V\), cioè la coppia \((x, y)\) non appartiene all’insieme di veto \(V\).
A questo punto in G vengono cercati i cicli, cioè situazioni del tipo $a \succ b \succ c \succ a$. In casi di questo genere si sceglie di considerare le alternative equivalenti e questo si traduce in una operazione di condensamento dei singoli nodi in un unico nodo che li rappresenta tutti. Così facendo viene ridotta la dimensione del grafo e non compaiono come distinte alternative che il metodo non è in grado di discriminare. Abbiamo così costruito un nuovo grafo $\hat{G} = (\hat{N}, \hat{A})$, dove ora i nodi non rappresentano più singole alternative, ma insiemi di alternative (eventualmente insiemi di cardinalità 1, cioè formati da un solo elemento).

5. **Si determina il nucleo del grafo.** Il nucleo del grafo \hat{G} viene definito formalmente come un sottoinsieme di nodi $\hat{N}^* \subseteq \hat{N}$ tale che

$$x, y \in \hat{N}^* \Rightarrow x \not\succ y,$$

$$y \in \hat{N} \setminus \hat{N}^* \Rightarrow \exists x \in \hat{N}^*: x \succ y,$$

cioè i nodi appartenenti al nucleo sono fra loro non confrontabili rispetto alla relazione \succ, e per ogni nodo fuori dal nucleo ce n’è almeno uno nel nucleo che è ad esso preferito. Il nucleo contiene quindi l’insieme delle alternative fra cui scegliere una, non necessariamente la migliore, ma molto probabilmente un buon compromesso.

Osserviamo che il grafo ottenuto alla fine dell’applicazione del metodo ELECTRE è aciclico, poiché i cicli sono stati eliminati attraverso l’operazione di condensazione dei nodi formanti un ciclo in un unico nodo. È possibile dimostrare che in questo caso il nucleo è unico.

Un esempio numerico

Consideriamo un semplice esempio ripreso da Vincke (1989). Supponiamo si voglia acquistare un’auto e che si sia deciso di utilizzare per la scelta quattro criteri, il costo, il confort, la velocità e l’estetica. Si abbiano 7 auto fra cui scegliere, ed i dati rilevanti siano quelli della seguente tabella.

Nell’ultima colonna sono indicati i pesi; si è scelto di dare peso massimo al costo, e poi il peso successivo, in ordine non crescente, al confort; per ultimi sono stati considerati la velocità e l’estetica.

Calcoliamo ora gli indici di preferibilità, riportati nella tabella 5.13. Usando poi come soglia il valore 0.70, possiamo ricavare la relazione di preferenza che è definita nella tabella 5.14.

A questa relazione di preferenza corrisponde il grafo di figura 5.2.
5.2. Analisi multicriteria

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Pesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo</td>
<td>300</td>
<td>250</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>100</td>
<td>0.33</td>
</tr>
<tr>
<td>Confort</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>S</td>
<td>S</td>
<td>0.27</td>
</tr>
<tr>
<td>Velocità</td>
<td>V</td>
<td>M</td>
<td>V</td>
<td>M</td>
<td>V</td>
<td>M</td>
<td>M</td>
<td>0.20</td>
</tr>
<tr>
<td>Estetica</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>0.20</td>
</tr>
</tbody>
</table>

(E = Eccellente; M = Medio; S = Scarso; V = Veloce)

Tabella 5.12. Acquisto di un’automobile

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.47</td>
<td>0.67</td>
<td>0.47</td>
<td>0.67</td>
</tr>
<tr>
<td>3</td>
<td>0.73</td>
<td>0.73</td>
<td>1</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>0.53</td>
<td>0.53</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.67</td>
</tr>
<tr>
<td>5</td>
<td>0.53</td>
<td>0.73</td>
<td>0.8</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.67</td>
</tr>
<tr>
<td>6</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>1</td>
<td>0.67</td>
</tr>
<tr>
<td>7</td>
<td>0.33</td>
<td>0.53</td>
<td>0.33</td>
<td>0.53</td>
<td>0.53</td>
<td>0.6</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 5.13. Acquisto auto: indici di preferibilità

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Capitolo 5. Valutazione di progetti

A partire da questo grafo possiamo costruire il grafo ridotto di figura 5.3, in cui i nodi appartenenti allo stesso ciclo sono stati compattati in un solo nodo.

Qui il nucleo del grafo è costituito dal nodo (4,5,6) e dal nodo 7. La cosa è abbastanza ragionevole. Infatti il metodo ci fornisce due alternative principali. Da un lato privilegiare l’aspetto costo e scegliere quindi l’auto n.7 che è quella che costa di meno, anche se peggiore dal punto di vista delle altre caratteristiche, e, dall’altro, scegliere invece una delle tre auto, 4, 5 e 6, caratterizzate da un costo intermedio e da un livello di qualità complessivo comparabile.
5.2. Analisi multicriteria
Capitolo 5. Valutazione di progetti
Bibliografia

Indice analitico

Ackoff, Russell L., 5
Albero delle decisioni, 80
Analisi Costi Benefici, 123
Analisi Costi Efficacia, 131
Analisi Multicriteria, 133
Andamento di riferimento, 57
Attualizzazione, 124
Axelrod, Robert, 67, 87

Benefici netti attualizzati, 124
Benefici sociali, 126
Beneficio sociale totale attualizzato, 126
Beneficio totale attualizzato, 125
Bouyssou, Denis, et al., 106

Checkland, Peter, 8
Ciclo causale, 18
Coefficiente
di costo, 34
di difesa, 33
di ostilità, 34
di ritardo, 44
Commons, 91
Competizione, 87
Competizione fiscale, 82
Conflitto israelo-palestinese, 83
Cooperazione, 87
Correttezza, 9
Costi sociali, 126

D’Angelo, Leila, 21, 30
Diamond, Jared, 55, 59, 85
Dilemma del prigioniero, 79

Dinamica dei Sistemi, 28

Efficacia, 9
Efficienza, 9
Elezioni francesi del 2002, 116
Epstein, Gerald, 83
Equilibrio, 73, 77
Equilibrio di Nash, 73, 86

Feedback, 18
Flussi, 28, 31
Forman, Paul, viii
Forrester, Jay W., ix

Funzione
con rendimenti decrescenti, 71
di utilità, 70, 72
di utilità generalizzata, 75

Funzione obiettivo, 2

Galtung, Johan, 6, 25
Gas serra, 51
Grey, Edward, 30
Grilli di Cortona, Pietro, et al., 106

Hardin, Garret, x, 91
Hare, Thomas, 115

Indice di forestazione, 60
Indice di preferibilità, 141
Indipendenza, 114
Indipendenza dalle alternative irrilevanti, 111
Instant Runoff Voting, 115
IPCC, 52
Isola di Pasqua, 55, 85
<table>
<thead>
<tr>
<th>Jevons, William Stanley, 96</th>
<th>Relazioni causali, 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lessing, Doris, 10</td>
<td>Rete di trasporto, 100</td>
</tr>
<tr>
<td>Linguaggi</td>
<td>Retroazione, 18</td>
</tr>
<tr>
<td>Espressività, 27</td>
<td>Richardson, George P., 18, 19</td>
</tr>
<tr>
<td>Potenza, 27</td>
<td>Richardson, Luis Frey, 21, 29</td>
</tr>
<tr>
<td>Livelli, 28, 31</td>
<td>Riduzionismo, 128</td>
</tr>
<tr>
<td>Lucchetti, Roberto, 73</td>
<td>Roggeveen, Jacob, 55</td>
</tr>
<tr>
<td>Mérö, László, 79</td>
<td>Rosenhead, Jonathan, 6</td>
</tr>
<tr>
<td>Manipolazioni, 110</td>
<td>Roy, Sara, 23</td>
</tr>
<tr>
<td>Manipolazioni del voto, 111, 115</td>
<td>Simón, Herbert H., vii, 6, 7</td>
</tr>
<tr>
<td>Metodo del consenso, 120</td>
<td>Soglia di preferibilità, 141</td>
</tr>
<tr>
<td>Metodo ELECTRE, 140</td>
<td>Strategia MaxMin, 80</td>
</tr>
<tr>
<td>Mill, John S., 18</td>
<td>Sutton, Rebecca, ix</td>
</tr>
<tr>
<td>Moai, 57, 63</td>
<td>Tasso di attualizzazione, 124</td>
</tr>
<tr>
<td>Modello di Richardson, 29</td>
<td>Tasso di crescita, 31</td>
</tr>
<tr>
<td>Monotonia, 114</td>
<td>Teorema</td>
</tr>
<tr>
<td>Myrdal, Gunnar, 19, 20</td>
<td>di Arrow, 119</td>
</tr>
<tr>
<td>Nucleo del grafo, 144</td>
<td>di Gibbard-Satterthwaite, 119</td>
</tr>
<tr>
<td>Ordinamenti, 106</td>
<td>Teoria dei giochi, 80</td>
</tr>
<tr>
<td>Ordinamento</td>
<td>The tragedy of the Commons, 91</td>
</tr>
<tr>
<td>forte, 110</td>
<td>Tit for tat, 88</td>
</tr>
<tr>
<td>Ordinamento aggregato, 107</td>
<td>UnDP, 16</td>
</tr>
<tr>
<td>Ostrum, Elinor, x</td>
<td>Varioibile</td>
</tr>
<tr>
<td>Ottimo sociale, 76</td>
<td>ausiliaria, 28, 31, 33</td>
</tr>
<tr>
<td>Paradosso di Braess, 100</td>
<td>di attività, 18, 21</td>
</tr>
<tr>
<td>Paradosso di Jevons, 95</td>
<td>di stato, 18, 21</td>
</tr>
<tr>
<td>Parassita, 77</td>
<td>Velo di ignoranza, 76</td>
</tr>
<tr>
<td>Policy narrative, 69</td>
<td>Veto, 143</td>
</tr>
<tr>
<td>Popper, Karl R., viii</td>
<td>Vincitore secondo Condorcet, 107</td>
</tr>
<tr>
<td>Potere discriminante, 143</td>
<td>Vincke, 1989, 144</td>
</tr>
<tr>
<td>Profilo di voto, 106</td>
<td>Vincoli, 1</td>
</tr>
<tr>
<td>Rapoport, Anatol, 70</td>
<td>Volvera, Vito, 35</td>
</tr>
<tr>
<td>Rawls, John, 76</td>
<td>Voto</td>
</tr>
<tr>
<td>Regola d’oro, 90</td>
<td>criterio di Borda, 110</td>
</tr>
<tr>
<td>Relazione</td>
<td>criterio di Condorcet, 107</td>
</tr>
<tr>
<td>di indifferenza, 108</td>
<td>eliminazioni successive, 112</td>
</tr>
<tr>
<td>di preferenza, 108</td>
<td>independenza, 118</td>
</tr>
<tr>
<td></td>
<td>non dittatura, 119</td>
</tr>
</tbody>
</table>
non manipolabilità, 119
per approvazione, 117
sistemi di, 105, 106
transitività, 118
unanimità, 118
universalità, 118