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We investigate behavior in two unprofitable games—where Maxmin strategies do
not form a Nash equilibrium yet guarantee the same payoff as Nash equilibrium
strategies—that vary in the riskiness of the Nash strategy. We find that arguments
for the implausibility of Nash equilibrium are confirmed by our experiments; how-
ever, claims that this will lead to Maxmin play are not. Neither solution concept
accounts for more than 53% of choices in either game. The results indicate that the
tension between the Nash and Maxmin strategies does not resolve itself over the
course of the experiment. Moreover, the relative performance of the solution con-
cepts is sensitive to the riskiness of the Nash strategy. Journal of Economic Literature
Classification Numbers: C72, C92.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Determining how rational individuals will play a particular game is per-
haps the fundamental question that game theory seeks to answer. The most
frequently employed solution concept for answering this particular question

1We are grateful to the anonymous referees as well as participants at the ESA conferences
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work was supported by the National Science Foundation and the Woodrow Wilson School.
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LEFT RIGHT
UP 2, 6 4, 2

DOWN 6, 0 0, 4

FIG. 1. Aumann’s example.

is Nash equilibrium. However, in some games it has been argued that Nash
equilibrium is not a plausible prediction about how rational individuals
would play.2 Aumann (1985) offers the example shown in Fig. 1.
The strategies comprising the unique Nash equilibrium in this game con-

sist of Row player choosing UP and DOWN with equal probability and
Column player doing likewise with LEFT and RIGHT. If both players play
the equilibrium strategies, then each earns an expected payoff of 3. Of
course, if Column were instead only to choose RIGHT while Row contin-
ued to play her equilibrium strategy, then Row’s expected payoff would be
reduced to 2. Moreover, as long as Row plays the equilibrium strategy, Col-
umn is not disadvantaged in any way by switching to only playing RIGHT.
Aumann argues that the Nash equilibrium of this game is implausi-

ble since Row has a means of assuring herself an expected payoff of 3
regardless of the strategy played by Column. Were Row to play UP with
probability 34 then, for any choice by Column, Row obtains an expected pay-
off equal to 3—exactly what she obtained when both players were playing
the equilibrium strategies—but without the risk of lower payoffs from Col-
umn doing unexpected things. Aumann suggests that the availability of this
secure strategy undermines the Nash equilibrium prediction: “This risk is
quite unnecessary, since player 1 has the Maxmin strategy ( 34 ,

1
4 ) available,

which assures him of 3 regardless; similarly player 2 has strategy ( 14 �
3
4 ).

Under these circumstances it is hard to see why the players would use their
equilibrium strategies” (p. 668).
In the terminology of Harsanyi (1966), the game in Fig. 1 is unprofitable

to each player. That is, for each player no equilibrium yields more than
the Maxmin payoff. In many unprofitable games Nash and Maxmin strate-
gies do not coincide, and for these games Harsanyi (1964, 1966, 1977),
Aumann and Maschler (1972), and Aumann (1985) have all argued that
Nash equilibrium is a poor prescription/description of how rational players
would play. In this paper, we examine this debate from an experimental per-
spective. Specifically, we examine whether or not Nash equilibrium profiles
are reasonable descriptions of how experimental subjects play these games
and, if not, what strategies are employed. To make identification of strate-
gies more transparent, we consider symmetric unprofitable games that have

2Other solution concepts, for example, Rationalizability and Cautious Rationalizability
(Pearce, 1984; Bernheim, 1984) might be applied, but in all the games we discuss these have
no predictive power, as they do not rule out any strategy profiles.
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a unique pure strategy Nash equilibrium distinct from the unique Maxmin
pure strategy.
While the arguments against Nash equilibrium in this context appear rea-

sonable, they still leave unanswered the question of how rational individuals
play unprofitable games. Harsanyi (1977), in specifying postulates of ratio-
nal play in games, suggests, “If a player cannot hope to obtain more than
the Maxmin payoff, then that player should use a strategy fully assuring at
least that much” (p. 116). This motivates the following:

A1. Maxmin postulate. In any game G unprofitable to you, always use a Maxmin
strategy. (p. 116)

This postulate offers a sharp prediction at odds with Nash equilibrium
for how rational players will play some unprofitable games.3 For pre-
cisely for this reason, it is somewhat controversial: van Damme (1980) has
argued that a “good set of axioms” cannot include this postulate since
any axiomatic theory of rational decision-making must yield equilibrium
point solutions for all non-cooperative games. By having the Maxmin strat-
egy occur as a pure strategy, our experimental design should give a clear
indication of whether or not this postulate is a good description of actual
behavior.
The arguments against Nash equilibrium play and in favor of Maxmin

depend implicitly on the beliefs about “unexpected” play by an opponent.
For instance, in Aumann’s example, Row is clearly worse off playing the
Nash equilibrium strategy if Column plays only RIGHT, but is better off if
Column plays only LEFT. Thus, the argument that Nash equilibrium play is
risky essentially means that Row judges “excess” RIGHT play to be more
likely than “excess” LEFT play.
To recommend Maxmin play requires more than this. In the above exam-

ple, if Row really believes that excess RIGHT play is prevalent, her best
alternative is not to play the Maxmin strategy but rather to play UP. Thus,
to obtain the Maxmin prediction, it must be that weights Row places on the
proportion of LEFT and RIGHT play change as her own strategy changes.
That is, if Row counters excess RIGHT play by choosing UP, then she
must believe that Column’s behavior will also change (in a detrimental
fashion) to mostly LEFT play. Indeed, part of Harsanyi’s motivating argu-
ment (“–cannot hope to obtain more than the Maxmin payoff–”) seems
to suggest that, for any strategy, these shifting pessimistic beliefs are the
natural ones to ascribe to players. This reasoning may be made more for-
mal by using Lo’s (1996) game theoretic adaptation of the multiple prior

3In the remainder of the paper, we consider only unprofitable games where Nash and
Maxmin strategies are distinct. In games where the two concepts coincide, for example, zero-
sum games or games with dominant strategies, the Maxmin postulate does not challenge the
equilibrium prediction.
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framework of Gilboa and Schmeidler (1989). We discuss this in more detail
in the next section.
We anticipated that the degree of “riskiness” associated with playing the

Nash equilibrium was likely to play an important role in its success relative
to the Maxmin postulate. To assess this hypothesis, we examined behavior in
two unprofitable games that differ from one another in terms of a simple
measure of riskiness. Both games are two-player 3 × 3 symmetric games
with a unique pure Nash equilibrium strategy (labeled A), a unique Maxmin
(pure) strategy (C), and a third strategy (B) which is a best response to
Maxmin play. In both games, a Nash player benefits from B play by her
opponent but is made worse off (relative to Maxmin) by C play. In the
“Baseline game,” the Nash strategy delivers less than the Maxmin strategy
if C play is more than two-thirds as likely as B play. In the second game,
which we call the “Upside Game,” C play must be at least 2.67 times more
likely than B play for the Nash strategy to yield a lower payoff than Maxmin.
Thus, Nash play in the Baseline game may be viewed as riskier than in the
Upside game since the proportion of unexpected C play can be quite low
yet still lead to payoffs lower than that obtained by playing the Maxmin
strategy. In the next section, we show that other measures of riskiness,
based on multiple prior models, lead to the same conclusion.
By varying the riskiness of Nash play in our treatments, we examine

a number of questions in the extant theoretical literature. First, does the
riskiness of Nash equilibrium strategies undermine the descriptive power of
Nash equilibrium? Our results suggest the answer to be yes. In our Base-
line Game, only 14% of choices corresponded to the Nash strategy. In the
Upside Game, the Nash strategy was modal, but still only accounted for
47% of choices.
Second, is Maxmin play a good description of how subjects play unprof-

itable games? We obtain a negative answer to this question. In the Baseline
Game, the Maxmin strategy accounts for the majority (53%) of choices,
but this still leaves a substantial proportion of non-Maxmin choices. In the
Upside Game, the Maxmin strategy accounts for only 30% of choices.
Third, are pessimistic beliefs a good description of how subjects evaluate

unprofitable games? We reject this contention. In the Upside Game, choices
corresponding to Nash occur almost four times as often as in the Baseline
game. This suggests that variation in the upside riskiness of Nash strategies
does affect subjects’ propensities to choose them.
A better sense of the performances of Nash and Maxmin strategies is

obtained by comparing them with alternative models. In this paper we
consider three alternatives: a random play model, a mixed-strategy equi-
librium model, and McKelvey and Palfrey’s (1995) quantal response equi-
librium model (QRE). We find that, in the class of models considered,
the QRE outperforms all other models in predictive power, according to
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standard scoring rules applied to out-of-sample predictions, while the two
models most widely discussed, pure Nash and Maxmin, do worst.
Our experiments have two especially noteworthy features. First, in our

games, the Maxmin strategy is quite transparent since it is a pure strategy
with a constant payoff, and there is a Nash equilibrium in pure strategies as
well. This seems appropriate in light of the debate about whether subjects
play mixed strategies (see Brown and Rosenthal, 1990; O’Neill, 1987; and
Shachat, 1996). Second, we use two parameterizations that explicitly manip-
ulate the riskiness of equilibrium strategies. This allows us to directly test
the implicit Maxmin assumption that subjects entertain pessimistic beliefs
when making choices.4

The remainder of the paper is organized as follows. In Section 2 we
describe unprofitable games and discuss alternative solution concepts.
Our experimental design and procedures are outlined in Section 3. We
present our results, including an evaluation of various models, in Section 4.
Section 5 concludes.

2. UNPROFITABLE GAMES

In this section, we describe the two unprofitable games that we used to
examine behavior. As mentioned previously, the games we consider have a
unique pure strategy Nash equilibrium and a different unique pure Maxmin
strategy. In addition, we sought several other features to reduce the com-
plexity of the experimental environment. First, we restricted our attention
to symmetric games. Second, we sought a minimal number of pure strate-
gies. Finally, we sought a minimal number of payoff levels in the payoff
matrices of each of the games. Below, we establish that symmetric 3 × 3
games with three payoff levels best meet these criteria.
We begin by showing that, regardless of symmetry, having only two pure

strategies is insufficient to meet our objective of having distinct Nash and
Maxmin outcomes occur in pure strategies.

4To our knowledge, the only previous experimental investigations of unprofitable games
are papers by Holler and Host (1990) and Ochs (1995). Both of these papers report results
on 2 × 2 asymmetric unprofitable games with both Nash and Maxmin profiles occurring in
mixed strategies. Holler and Host find “significant evidence in favor of maximin”; however,
their subjects were given no financial incentives for their decisions, nor were they playing real
opponents in making their strategy decisions. Ochs rejects both Maxmin and Nash profiles in
describing aggregate subject behavior. Ochs also reports estimates made with the QRE model
as well as simulations using a choice-reinforcement learning model and concludes that they
both fit the data better than the static predictions.
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A B C
A 40, 40 60, 10 10, 40
B 10, 60 10, 10 60, 40
C 40, 10 40, 60 40, 40

FIG. 2. Baseline Game.

Proposition 1. There does not exist any 2 × 2 game with distinct Nash
and Maxmin profiles in pure strategies.5

Thus, we are forced to have three or more pure strategies to meet our
criteria. The following proposition shows that with symmetric 3× 3 games,
we must have more than two payoff levels as well.

Proposition 2. There does not exist a symmetric 3× 3 unprofitable game
with two payoff levels and distinct Nash and Maxmin strategies.

Our Baseline Game, shown in Fig. 2, establishes that there is a 3 × 3
unprofitable game with three payoff levels that does meet our criteria.
In this game the Maxmin strategy is C, which guarantees a payoff of 40.

This is not a Nash equilibrium, as B is a best response to C. In turn, A is
a best response to B. The unique pure Nash equilibrium is (A, A), which
delivers a payoff of 40.
All of the implications of interest in the Baseline Game occur when

subjects simply choose from among the pure strategies; thus, we do not
need (or particularly want) subjects to be playing the mixed extension of the
above normal-form game.6 If, however, we characterize equilibria arising
in the mixed extension of the Baseline Game, we find that, in addition
to the equilibrium (A, A), there is a symmetric mixed equilibrium where
B is played with probability .4 and C with probability .6 as well as two
asymmetric mixed-strategy equilibria.7

In light of this fact, it might be useful to have uniqueness of Nash equilib-
rium in the mixed extension of our candidate games. The following propo-
sition shows that if a symmetric 3× 3 unprofitable game has a pure strategy
equilibrium and a distinct pure Maxmin strategy, then its mixed extension
also has a symmetric mixed-strategy equilibrium.

Proposition 3. Every symmetric 3 × 3 unprofitable game with distinct
Nash and Maxmin profiles in pure strategies has a symmetric Nash equilib-
rium in mixed strategies.

5See Appendix A for a proof of this and other propositions in this section.
6The mixed extension of a normal form game is a game in which each player’s strategy

set consists of all probability distributions over pure strategies. See Osborne and Rubinstein
(1994, Definition 32.1) for details.

7In an asymmetric equilibrium, one player chooses A with probability .4 and C with prob-
ability .6 while the other player chooses B with probability .6 and C with probability .4.
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A B C
A 40, 40 120, 10 10, 40
B 10, 120 10, 10 120, 40
C 40, 10 40, 120 40, 40

FIG. 3. Upside Game.

Proposition 3 shows that, in the class of games we study, the mixed exten-
sion always admits multiple equilibria; however, all of these mixed-strategy
equilibria lead to the same expected payoff as the Maxmin strategy. Our
view is that mixed-strategy predictions for the games studied are highly
implausible. Notice that, for the mixed-strategy prediction to literally hold
at the individual level, players must actively randomize over a set of pure
strategies that includes the Maxmin strategy.8 It is hard to see why such
a randomization would be willingly undertaken when a player can obtain
the same (expected) payoff—with certainty—by simply playing the Maxmin
strategy. That is, if there were any effort cost whatsoever to randomiz-
ing, a player would strictly prefer to choose Maxmin. This argument, along
with several others, underlies a well-documented skepticism on theoreti-
cal grounds regarding mixed strategies.9 Furthermore, even in laboratory
experiments where a unique mixed-strategy equilibrium corresponds with
Maxmin play, these predictions have received, at best, limited support.10 For
these reasons, we focus mainly on the pure strategy equilibrium prediction.
We vary the riskiness of Nash play, holding fixed the number of pure

strategies and payoff levels, by increasing all of the 60 payoffs to 120. We
refer to the resulting game as the Upside Game (see Fig. 3). Notice that
this game is best response equivalent to the Baseline Game, and, hence,
(A, A) is still the unique pure strategy equilibrium. Likewise, C is still the
unique Maxmin strategy.11

As mentioned previously, implicit assumptions about beliefs and riskiness
of Nash play are at the heart of Harsanyi’s Maxmin postulate and Aumann’s
critique of the Nash prediction. To formalize these ideas, we study the prop-
erties of our Baseline and Upside games, using a game-theoretic adaptation
of Gilboa and Schmeidler’s multiple prior model (Lo, 1996). To facilitate
comparison, we adopt Lo’s notation exactly. Let S = S1 × S2 denote the
set of pure strategy profiles for a given normal-form game. Let gi� S → X

8Of course, it could be that individuals all play pure strategies leading to a population with
mixed-strategy proportions of each strategy.

9Rubinstein (1991) presents a wide-ranging discussion of these issues.
10See, for instance, Brown and Rosenthal (1990).
11In the symmetric mixed-strategy equilibrium of the Upside Game A is played with prob-

ability 55/88, B is played with probability 9/88, and C is played with probability 24/88. This
game has no asymmetric equilibria.
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be the outcome function of the game for player i. Let ui� M�X� → R
represent i’s preference ordering over the set of lotteries of X, denoted
by M�X�. Let M�Si� be the set of mixed strategies available to player i
with typical element σi. Finally, i’s beliefs about the strategies that player j
might select are given by the closed and convex set Bi ⊆M�Sj� with typical
element pi.
In this framework, a strategy σi is a best response to beliefs Bi if

σi ∈ argmax
σi∈M�Si�

min
pi∈Bi

ui�σi� pi�� (1)

Equation (1) says that a strategy σi is a best response if it maximizes i’s
payoff, given (pessimistic) multiple prior beliefs, Bi. With this definition in
mind, the following is immediate:

Remark. Suppose that for all i, Bi = M�Sj�, then a best response for i
is a Maxmin strategy.

The remark states that if a player’s priors are completely diffuse, then
she can do no better than to play a Maxmin strategy.12

To assess the relative riskiness of Nash strategies in the Baseline versus
the Upside game with the use of this framework, we first identify the sets
of beliefs against which A is a best response for each game. We let B∗

i and
U∗
i denote these sets for the Baseline and Upside Games, respectively.
The set of beliefs against which A is preferred to B, C, and all convex

combinations of A, B, and C in the Baseline Game is

B∗
i = 
p�pA ≥ 1− �5/3�pB��

where, in a slight abuse of notation, p = �pA� pB� 1−pA −pB� denotes an
element of the unit simplex, pA denotes the probability assigned to strategy
A, and pB is the probability assigned to B.
For the Upside Game,

U∗
i = 
p�pA ≥ 1− �11/3�pB� pA ≥ �11/14� − �11/7�pB��

where the first inequality ensures that A is preferred to B, and the second
ensures that A is preferred to C.
One can readily verify that B∗

i ⊂ U∗
i . In other words, the set of beliefs

where Nash play is a best response in the Baseline game is a strict subset
of the set of beliefs where it is a best response in the Upside game, even
when beliefs are “pessimistic” in the sense of the multiple priors model.
Thus, by this measure, Nash play is less risky in the Upside Game than

12This remark is formalized as Proposition 1 in Lo (1996).
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in the Baseline Game. However, for completely diffuse priors, Maxmin is
predicted for both games.
Finally, notice that standard (single prior) beliefs are a special case of

this framework where Bi is restricted to being a singleton. In that case, any
belief that leads to a best response of A in the Baseline Game also leads
to a best response of A in the Upside Game, but not viceversa. Thus, once
again, we have that the Baseline game is riskier than the Upside game.

3. EXPERIMENTAL DESIGN AND PROCEDURES

The experiment consisted of 12 sessions, six conducted at the Univer-
sity of Newcastle (U.K.) in spring 1998 and six at Penn State University
(U.S.) in summer 1998. Ten subjects participated in each session, and no
subject appeared in more than one session. At each location, three sessions
involved the Baseline game and three involved the Upside game. The U.K.
and U.S. sessions allowed us to investigate the robustness of results across
subject pools, since as far as was possible the same procedures were used
in the two countries. For the U.K. sessions, subjects were recruited by an e-
mail invitation to participate in a decision-making experiment. Participants
were promised between £2 and £12 for a session lasting at most 75 min-
utes. For the U.S. sessions subjects were respondents to posters offering
between $3 and $18 for a session lasting less than 1 hour. During the ses-
sion, subjects accumulated points according to their decisions, and at the
end of a session subjects were paid either 10p per 25 points (U.K.) or 25 �c
per 40 points (U.S.).13

The following procedures were common to all sessions. At the beginning
of a session, the 10 subjects were seated at computer terminals and given a
set of instructions. These instructions were read aloud, and, at the end, sub-
jects were given an opportunity to ask questions. Subjects then completed
a quiz to ascertain that they understood how their choices translated into
earnings.14

The session then consisted of 50 rounds. No communication between
subjects was permitted, and all choices and information were transmitted
via computer terminals. In each round, a subject chose from the options
A, B, and C. When all subjects had made their choice, subjects were
randomly paired and informed of their opponent’s choice. Subjects then
received point earnings according to their choice and the choice of the
person with whom they were paired, according to one of the payoff matri-
ces described in the previous section. At the end of each round subjects

13At the time of the experiments, £1 = $1�65, so that the stakes are quite comparable.
14Appendix B contains copies of the instructions and quiz.
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received additional feedback about the results of the round. Specifically,
subjects were informed of the number of A’s, B’s, and C’s chosen, and the
average earnings of subjects who chose A, B, and C, respectively.
At the end of the session, subjects were paid in cash according to their

accumulated point earnings, using the appropriate exchange rate. All ses-
sions took fewer than 50 minutes, and average earnings were £7.44 (U.K.
Baseline sessions), £9.26 (U.K. Upside), $12.33 (U.S. Baseline), and $14.53
(U.S. Upside). This is considerably more than outside earnings opportuni-
ties of the subjects. In fact, subjects completed a short post-experimental
questionnaire and the question “Would you be willing to take part in other
experiments of this sort?” received 119 out of 119 affirmative responses.15

Several features of the design are worth noting. Our goal was to choose
the simplest possible unprofitable game with pure Nash and Maxmin strate-
gies. As described above, this led us to restrict our attention to 3× 3 sym-
metric games with three levels of payoff. We regarded this as sufficiently
simple to ensure that subjects had a complete understanding of the game.
In addition, we administered a quiz prior to the experiment to test sub-
ject understanding of the payoff matrix, and all subjects completed the quiz
correctly before the decision-making part of the session began. We also
tried to facilitate understanding by having subjects play the game repeat-
edly and providing them with feedback about the population proportions
and average payoffs from playing each strategy in the previous period.
As we mentioned previously, our simple games still have some unde-

sirable, but inevitable, features: the games have more than two levels of
payoff and a mixed equilibrium. Despite this, to keep the design as simple
as possible, we chose not to employ a binary lottery procedure to induce
(theoretically) risk-neutral preferences.16

4. RESULTS

In this section, we examine aggregate behavior for evidence of venue
or game treatment effects. Our main finding is that the game treatment
(Baseline versus Upside) has a strong effect on behavior. The presence
of a game effect is inconsistent with the notion that subject choices are
based on extremely pessimistic beliefs. We then turn to a more detailed
analysis assessing how well the various theoretical predictions of the Base-
line and Upside game do in describing subject behavior. We find that

15There was one non-respondent.
16An additional consideration for eschewing the use of the binary lottery is that its success

in inducing risk-neutral behavior in practice is decidedly mixed and may in fact be worse than
simply using money directly (Selten et al., 1999).
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neither the pure strategy Nash nor the Maxmin predictions do especially
well in describing subject behavior. We compare these benchmarks with
three other hypotheses: random play, in which subjects choose each strat-
egy with equal probability, the mixed Nash equilibrium, and QRE play.
These fare much better than the benchmark predictions according to stan-
dard scoring rules. Indeed, in all sessions, random play outperforms both
pure Nash and Maxmin. In the Baseline game, the mixed-strategy Nash
equilibrium does reasonably well according to a Mean Square Deviation
criterion, but fares less well in the Upside game. However, this finding is
sensitive to the scoring rule (in particular, the extent to which the scoring
rule penalizes models for attaching a zero probability to choices that are
actually observed). Of the five models considered, overall the best perform-
ing is the QRE model. In the remainder of this section, we examine these
results in more detail.

4.1. Comparing Pure Nash and Maxmin Predictions

Histograms of subject choices for each game and country are presented
in Fig. 4. This figure highlights the fact that the country in which a given
game is run makes little difference to the distribution of choices, but the
game treatment has a marked effect. Consider first the Baseline game. The
most frequently observed choice is C and the least frequently observed is A.
(Although Fig. 4 pools the data from three sessions for each country, this
same pattern is observed in all six sessions when considered separately.)
Thus, at least for this game, the Maxmin outperforms the pure Nash strat-
egy as a predictor of behavior. It should be noted, however, that although
most choices are C’s, and hence are consistent with Maxmin play, there
is a substantial amount of B play (33% of choices across all six sessions),
which is consistent with a best response to C. Thus, the Baseline game gives
only limited support to the Maxmin concept as a description of observed
behavior.
Next, consider the Upside game. In contrast to the Baseline game, the

most frequently observed choice in the Upside game is A, the pure Nash
strategy, and the least frequently observed choice is B. (Again, these same
patterns are observed in all six sessions when considered separately.) How-
ever, while there is some support for the pure Nash strategy in the Upside
sessions, the majority of choices are not the pure Nash strategy.
The Maxmin strategy (C) and the best response to the Maxmin strategy

(B) are both chosen less frequently in the Upside game than in the Baseline
game. Thus, the performance of the Maxmin prediction varies across games
in a manner that seems to reflect differences in the riskiness of the Nash
strategy as well as the increased incentive to choose strategy B against a
Maxmin player.
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FIG. 4. Histograms of Choices by game and country.

We use two methods to determine whether choices are systematically
related to venue or game. First, we treat each session as a single observation
and use a permutation test to determine the presence of a venue effect.17

For both games, regardless of whether we use the proportion of A, B, or
C play to be the summary statistic being compared, we fail to reject the
null hypothesis that the data generation process is the same across venues.
Second, we test for venue effects by using Fisher’s exact test of the dif-
ference in empirical frequencies of choices A, B, and C with first-round
data for a given game treatment.18 We find no significant difference in the
proportions of first-round choices across countries for the Baseline game
(p value = �351), or for the Upside game (p value = �110). Next, we exam-
ine the presence of game effects by using these same tests. Permutation
tests indicate a significant game effect regardless of whether we use the
proportions of A, B, or C choices as the summary statistic. Similarly, the

17Specifically, let Ys be a summary statistic based on session s data. We conclude that the
venue has a significant effect if either Max
YUS 1� YUS 2� YUS 3� < Min
YUK 1� YUK 2� YUK 3�
or Max
YUK 1� YUK 2� YUK 3� <Min
YUS 1� YUS 2� YUS 3�. If the data generation process is the
same across venues, Pr
Max
YUS 1� YUS 2� YUS 3� < Min
YUK 1� YUK 2� YUK 3�� = 3!3!/6! =
0�05, this is a 10% significance test.

18Since first-round choices may be viewed as independent, the Fisher exact test is
appropriate.
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Fisher exact test of the hypothesis that there is no game treatment effect is
clearly rejected (P value = 0�002). Choice proportions in first-round data
are given in Table I.
One might wonder whether the patterns of play observed above are sta-

ble across rounds. For instance, it is possible that learning effects lead to
more Nash play later in the session. To study this, we recomputed the per-
mutation tests described above, using the data from the last 25 rounds of
each session. Again, we fail to detect venue effects but find significant game
effects.19 In particular, exactly the same patterns of play are evident in the
last 25 rounds as in all rounds taken together.
Although equilibrium and Maxmin payoffs are 40 points in both games,

Table II reveals an interesting difference in earnings attained by subjects
across the two games. In the Upside game subjects averaged 46.4 points
per round, whereas in the Baseline game earnings averaged 38.3 points per
round. In fact 53 of the 60 subjects in the Upside game earned more than
40 points per round, and only 7 earned less than 40 points per round. In
contrast, only 14 subjects in the Baseline game earned more than 40 points
per round, while 40 subjects earned less than 40 points per round. The
remaining six subjects employed the Maxmin strategy, choosing C in every
round. These subjects earned exactly 40 points, thus exceeding the average
payoff among Baseline subjects. This again illustrates the difference in the

19Details are available from the authors upon request.

TABLE I
Proportions of Choices by Session

All rounds First round Last 25 rounds

A B C A B C A B C

Baseline

UK 1 16.0 31.6 52.4 10.0 50.0 40.0 10.4 34.8 54.8
UK 2 25.4 29.2 45.4 10.0 0.0 90.0 22.4 30.0 47.6
UK 3 10.6 35.2 54.2 0.0 30.0 70.0 14.0 34.4 51.6
US 1 11.8 33.8 54.4 10.0 10.0 80.0 9.6 35.2 55.2
US 2 5.0 35.0 60.0 10.0 30.0 60.0 7.2 37.6 55.2
US 3 16.0 32.6 51.4 40.0 40.0 20.0 13.6 33.2 53.2

Upside

UK 1 42.6 24.0 33.4 20.0 10.0 70.0 52.0 17.6 30.4
UK 2 55.6 22.0 22.4 60.0 0.0 40.0 62.8 17.6 19.6
UK 3 46.8 23.6 29.6 50.0 10.0 40.0 46.8 24.0 29.2
US 1 47.8 22.8 29.4 40.0 30.0 30.0 50.8 21.2 28.0
US 2 36.4 26.8 33.8 50.0 30.0 20.0 47.6 26.4 26.0
US 3 46.8 19.0 34.2 30.0 20.0 50.0 44.4 18.4 37.2
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TABLE II
Average Payoff Per Round by Session

Session Baseline Upside

UK 1 36.36 46.38
UK 2 37.26 44.00
UK 3 37.94 48.48
US 1 39.66 46.82
US 2 40.34 47.70
US 3 38.40 44.92
ALL 38.33 46.38

riskiness of the two game treatments. In both games subjects understood
that choosing C guaranteed them a payoff of 40, but nearly all subjects
attempted to earn more than this. In the Baseline games such attempts
generally failed, and subjects who played the Maxmin strategy did relatively
well. In the Upside game deviations from the Maxmin strategy yielded more
than 40 points, so that attempts to improve upon the Maxmin payoff were
generally successful.
A possible explanation for payoff differences is that the games differ

in their potential for subjects to coordinate on strategies that maximize
joint payoffs. Formally, suppose that subjects select symmetric strategies to
maximize the sum of payoffs. In this case, the optimal strategy profile in the
Baseline game consists of playing B with 20% probability and C with 80%
probability. These strategies yield each subject an expected payoff of 42. In
contrast, maximizing strategies in the Upside game give 36.4% probability
to B and 63.6% to C, which yield each subject an expected payoff of 54.5. In
all cases subjects achieved substantially less than the coordination payoffs.
The decrease in the empirical frequency of C play in the Upside game
relative to Baseline is qualitatively consistent with the predictions of joint
profit maximization; however, the decrease in the empirical frequency of B
play is not. In neither game is anything close to the empirical frequency of
A play predicted. Thus, we find only weak support at best for the notion
that subjects are employing collusive strategies in these games.
Overall, the results offer strong support for Aumann’s argument that

the Nash equilibrium is an implausible prediction in unprofitable games.
Indeed, Nash play accounts for less than 50% of all choices in both games.
Numerous responses in post-experiment questionnaires indicated that the
riskiness of the Nash strategy relative to the safe Maxmin strategy seemed
to play a significant role in subjects’ thinking when they made their choices.
Moreover, our results offer strong support for the hypothesis that subjects
are more likely to play the Nash strategies in less risky, unprofitable games.
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Moving from the Baseline to the Upside game, subjects are more than three
times as likely to play the Nash strategy.
Our results do not support Harsanyi’s prediction that subjects will play

Maxmin in unprofitable games. Maxmin play accounts for only 53% of
choices in the Baseline game and only 30% of choices in the Upside treat-
ment. Furthermore, while subjects worried about the risk of A and B play,
they found the upside potential of these strategies too strong to resist in
many instances. That is, neither subjects behavior nor their questionnaire
responses indicate the degree of pessimism about the opponent’s strategies
that is required to justify always playing Maxmin. In fact, subjects did hope
to earn more than the 40 points associated with Maxmin play and would
often take chances on A and B play in the Baseline game and even more
so in the Upside game.
The change in the propensity to play Nash strategies is intriguing. Perhaps

it is possible that when the Upside is made large enough, play converges
to Nash. In particular, if we increase the 60 payoffs in the Baseline game
to 6000 (say), we will not affect the pure Nash or Maxmin strategies, but
we will massively increase the degree of weight subjects must place on
unexpected C play to justify their switching away from Nash. We suspect
that subjects would seldom find it desirable to forgo the “risk” associated
with playing Nash for the “safety” of playing Maxmin.
Since we find the pure Nash equilibrium prediction wanting, but at the

same time reject the notion that subjects play their Maxmin strategy instead,
in the next subsection we focus on measuring the applicability of these
solution concepts relative to some alternative models.

4.2. Assessing Models of Behavior

In assessing the performance of the pure Nash and Maxmin hypothe-
ses, we compare them with three alternative models of subject behav-
ior. The first alternative is the symmetric mixed Nash equilibrium,
�pA� pB� pC� = �0� �4� �6� and �pA� pB� pC� = �55/88� 9/88� 24/88� for
the Baseline and Upside games, respectively. The second alternative con-
sidered is denoted the “Random Play” model consisting of strategies
�pA� pB� pC� = �1/3� 1/3� 1/3�. The final model considered is a QRE
model. In this model all subjects choose the jth choice with probability

pj = exp
λπj�∑
k∈
A�B�C� exp
λπk�

�

where πj is the expected payoff from the jth choice and is therefore a
function of probability assessments about opponents’ behavior. The quan-
tal response equilibrium condition sets choice probabilities equal to these
probability assessments, thus providing a set of probabilities for a given
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TABLE III
Maximum Likelihood Estimates of QRE Models for Baseline Game

Session λ se(λ) pA pB −�
UK 1 1.017 0.122 0.200 0.300 358.848
UK 2 0.603 0.129 0.278 0.278 376.886
UK 3 1.932 0.191 0.089 0.357 318.319
US 1 1.369 0.143 0.147 0.325 342.112
US 2 2.611 0.271 0.048 0.382 282.391
US 3 1.126 0.129 0.182 0.308 358.610
ALL 1.297 0.056 0.156 0.320 2083.512

value of λ.20 The parameter λ can be interpreted as a sensitivity param-
eter: when λ = 0 all choices are equally probable, as λ increases more
probability weight is assigned to those choices that give a higher expected
payoff, and as λ approaches infinity the probability with which the expected
payoff maximizing choice is made approaches one.
Since the QRE prediction is based on the subject data whereas the

other models are not, we follow Camerer and Ho (1999) by estimating
the model using the first 70% of the data, reserving the last 30% of the
data for out-of-sample prediction.21 The maximum likelihood estimates for
the QRE model, estimated from the first 35 rounds of data, are presented
in Tables III and IV.

20In fact in our games there are sometimes two solutions to the set of equations, each
describing a path that converges (as λ → ∞) to a symmetric Nash equilibrium. We restrict
our attention to the path that converges to the mixed Nash equilibrium.

21An alternative employed by Chen and Tang (1998) is to use all observations to calibrate
and validate the models. Since all of the models with the exception of Maxmin are special
cases of QRE, it will always fit the data better. Using separate sets of observations to calibrate
and validate the models avoids this problem.

TABLE IV
Maximum Likelihood Estimates of QRE Models for Upside Game

Session λ se(λ) pA pB −�
UK 1 0.134 0.085 0.378 0.318 383.422
UK 2 0.658 0.143 0.515 0.228 357.680
UK 3 0.526 0.128 0.491 0.247 368.034
US 1 0.491 0.124 0.483 0.253 370.440
US 2 0.000 0.002 0.333 0.333 384.515
US 3 0.966 0.270 0.553 0.197 355.473
ALL 0.416 0.045 0.465 0.265 2242.253
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To compare the predictive performance of these models we use the
mean square deviation (MSD) scoring rule applied to the last 15 rounds of
choices:

MSD = 1
30S

50∑
t=36

S∑
i=1

∑
j∈
A�B�C�

(
d
j
i �t� − pji�t�

)2
�

where S is the number of subjects, dji �t� is a dummy variable indicating
whether subject i chose j in round t, and pji�t� is the predicted probability
with which subject i chose j in round t. Perfect predictions yield a score of
MSD = 0, and the worst possible score is MSD = 1.
While widely accepted as a reasonable measure of the predictive power

of models, the MSD measure has several limitations. For example, the MSD
criterion favors models that “smear” probability. Suppose that we observe
A in a given period. Then, a model that predicts (.59, .205, .205) will outper-
form a model predicting (.6, .4, 0) by this criterion. Given that the former
model actually placed less weight on the observed outcome, it seems pecu-
liar that, by allocating probability more evenly over unobserved choices, it
receives a better score than the latter model.22 Thus, we also report minus
the out-of-sample log-likelihood as another measure of predictive success
(where, again, lower values indicate better predictive performance):

−�35+ =
50∑
t=36

S∑
i=1

∑
j∈
A�B�C�

d
j
i �t� ln

(
p
j
i�t�

)
�

According to the MSD criterion, Maxmin predicts better than pure Nash
in the Baseline sessions (Table V) and vice versa for the Upside sessions
(Table VI). In this respect, the MSD scoring rule quantifies the information
contained in Fig. 4 rather well. By comparison, in every session all of the
other models presented in Tables V and VI achieve better MSD scores
than either of the pure strategy predictions. There is no clear MSD ranking
among the alternative models at the session level. In four of the six Baseline
sessions QRE does best, while the mixed Nash does best in the other two
sessions. Of the Upside sessions QRE does best in three, mixed Nash in
two, and Random Play in the last.
To get a better sense of the overall performance of the alternative models

we also computed the MSD scores after pooling the data from all sessions
for a given game. Then the ranking of the models for the Baseline game is

QRE �MSD Mixed Nash �MSD Random �MSD Maxmin �MSD Pure Nash�

22We thank an anonymous referee for bringing this point to our attention.
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TABLE V
Predictive Success of Models for Baseline Game

Maxmin Pure Nash Mixed Nash Random Play QRE

Session MSD −�35+ MSD −�35+ MSD −�35+ MSD −�35+ MSD −�35+
UK 1 0.440 — 0.933 — 0.273 — 0.333 164.792 0.283 141.714
UK 2 0.500 — 0.793 — 0.343 — 0.333 164.792 0.313 156.905
UK 3 0.487 — 0.853 — 0.317 — 0.333 164.792 0.303 151.227
US 1 0.447 — 0.947 — 0.270 — 0.333 164.792 0.277 134.659
US 2 0.460 — 0.940 — 0.277 — 0.333 164.792 0.273 130.601
US 3 0.440 — 0.893 — 0.290 — 0.333 164.792 0.287 142.704
ALL 0.463 — 0.893 — 0.297 — 0.333 988.751 0.290 855.769

where the relation �MSD has the obvious meaning. For the Upside game,
we have

QRE �MSD Mixed Nash �MSD Random �MSD Pure Nash �MSD Maxmin�
Thus, the QRE outperforms the other models in both games. In terms of

the log-likelihood-based scoring rule, for the Baseline sessions, QRE out-
performs the Random Play model, which in turn outperforms the other
models. In the Upside sessions there is little to choose between Random
Play and Mixed Nash, but overall the QRE model does best, giving the
highest score in four of the six sessions. The out-of-sample log-likelihood is
infinite if a choice is observed that is predicted to occur with zero probabil-
ity. As indicated in Tables V and VI, this happens in the cases of the Nash
and Maxmin predictions for all sessions, and in the case of the Mixed Nash
prediction for all sessions of the Baseline game. Thus, the log-likelihood
rule does not discriminate between these models for these sessions.
Overall, the tests confirm the implausibility of the Nash prediction in

unprofitable games. However, the Maxmin solution concept fares poorly;

TABLE VI
Predictive Success of Models for Upside Game

Maxmin Pure Nash Mixed Nash Random play QRE

Session MSD −�35+ MSD −�35+ MSD −�35+ MSD −�35+ MSD −�35+
UK 1 0.687 — 0.467 — 0.303 151.109 0.333 164.792 0.323 160.144
UK 2 0.800 — 0.373 — 0.273 142.442 0.333 164.792 0.277 141.576
UK 3 0.687 — 0.560 — 0.353 176.451 0.333 164.792 0.327 161.638
US 1 0.727 — 0.500 — 0.327 166.045 0.333 164.792 0.313 155.913
US 2 0.760 — 0.487 — 0.327 167.329 0.333 164.792 0.333 164.834
US 3 0.567 — 0.653 — 0.380 184.137 0.333 164.792 0.360 174.524
ALL 0.703 — 0.507 — 0.327 987.512 0.333 988.751 0.313 940.586
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thus there is little support for the Maxmin postulate. Of the models consid-
ered, QRE does best overall, while the two pure strategy predictions, pure
Nash and Maxmin, do worst.

5. CONCLUSION

Our results strongly support Aumann’s argument that the Nash equilib-
rium prediction is implausible in unprofitable games. Indeed, by the MSD
scoring rule, the pure Nash prediction in the Baseline game scores below
every alternative model, including a model where subjects choose strategies
at random. In the Upside game, the pure Nash prediction only outperforms
Maxmin. However, our results do not support Harsanyi’s Maxmin Postu-
late. By our scoring rule, every alternative model outperforms Maxmin in
the Upside game. In the Baseline game, Maxmin outperforms only the pure
Nash prediction.
Our results also strongly support the hypothesis that the Nash prediction

improves when Nash play is less risky. By our scoring rule, the pure Nash
prediction performs significantly better in the less risky Upside game than
it does in the Baseline game. Of course, with only two treatments, one
can only guess whether, with the upside increased sufficiently, play would
ultimately converge to the Nash prediction. In future research, we intend to
explore this further by examining a variety of unprofitable game treatments
that vary the potential upside associated with Nash play.

APPENDIX A: PROOFS

Proposition 1. There does not exist any 2 × 2 game with distinct Nash
and Maxmin profiles in pure strategies.

Proof. Consider the game described below.

LEFT RIGHT

UP 1, 1 c� b
DOWN a� d e� f

Without loss of generality, we suppose that the Nash equilibrium is UP,
LEFT (with payoffs normalized to 1), so that a ≤ 1 and b ≤ 1. If c ≥ e
then UP is a weakly dominant (and therefore also a Maxmin) strategy.
So suppose c < e. Then for DOWN, RIGHT not to be an additional equi-
librium, we must have d > f . But then LEFT is a weakly dominant (and
Maxmin) strategy. Hence either UP or LEFT is a weakly dominant strategy
and a Maxmin strategy.



142 morgan and sefton

Proposition 2. There does not exist a symmetric 3× 3 unprofitable game
with two levels of payoff and distinct Nash and Maxmin strategies.

Proof. Consider the payoffs to the row player represented as a 3 × 3
binary matrix. Such a matrix must have the following properties to be a
unprofitable game:

1. No rows consisting entirely of 0’s.

2. No pure strategy equilibria consisting of payoffs equal to 1 for each
player. If so, then the Maxmin strategies must consist of a row of 1’s, but
then this would be an equilibrium strategy, violating the requirement that
Nash and Maxmin strategies be distinct. This implies

a. No 1’s on the principal diagonal.

b. If the payoff to the row player from the strategy pair �x� y� is 1,
then the payoff to the strategy pair �y� x� must be 0.
With these conditions, any 3 × 3 two outcome symmetric game may be
represented by the matrix

A 3× 3 Two-Outcome Game
0 a b
1− a 0 c
1− b 1− c 0

There are two cases to consider: If a = 1, then the above facts imply c = 1
and b = 0. This reduces the game to rock-scissors-paper, where Nash and
Maxmin strategies coincide. Likewise, if a = 0, the above facts imply b = 1
and c = 0, and again the game is rock-scissors-paper.
Proposition 3. Every symmetric 3 × 3 unprofitable game with distinct

Nash and Maxmin profiles in pure strategies has a symmetric Nash equilib-
rium in mixed strategies.

Proof. Consider the set of 3 × 3 symmetric unprofitable games with a
unique pure strategy Nash equilibrium and a different unique pure Maxmin
strategy. Let the pure strategy equilibrium be (A, A), let the Maxmin strat-
egy be C, and normalize the equilibrium payoff strategy to zero. Then we
may represent any such game by the payoff matrix where b ≤ 0 (other-
wise (A, A) is not an equilibrium) and min
a� c� < 0 (otherwise A is the
Maxmin strategy):

A B C

A 0,0 c� b a� 0
B b� c d� d e� 0
C 0� a 0� e 0� 0
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For (A, C) and (C, C) not to be additional equilibria we must have e >
max
a� 0�. Then, for (C, B) and (B, B) not to be additional equilibria we
need c > max
d� 0�. Since this implies c > 0, from the earlier inequality
min
a� c� < 0 we must have a < 0. Finally, for (B, A) not to be an equi-
librium we need b < 0. In summary, the following constraints must hold:
c > 0� c > d� e > 0 > a, and b < 0.

Case 1. ec ≥ ad. Then consider the mixture σ = �p� q� 1 − p − q�,
where

p = ec − ad
�ec − ad� + ab− bc � q = ab

�ec − ad� + ab− bc �

Since ec− ad ≥ 0� ab > 0, and −bc ≥ 0, this mixture lies in the unit simplex
and is a feasible mixed strategy. Against this strategy it is easily verified that
A gives an expected payoff of 0, as does B and C. Thus any mixed strategy
is a best response to σ and thus σ is a best response to itself. Hence σ is
a full-support Nash equilibrium.

Case 2. ec ≤ ad. (Note that since ec > 0 and a < 0 this inequality
implies d < 0.) Then consider the mixture σ ′ = �0� e/�e− d�� d− /�e− d��.
Since e > 0 and −d > 0 this mixture lies in the unit simplex and is a
feasible mixed strategy. Against this strategy the expected payoff to A is
�ec − ad�/�e− d� < 0. The expected payoff to B or C against this strategy
is 0. Thus any mixture over B and C is a best response to σ ′, and thus σ ′

is a best response to itself. Hence σ ′ is a mixed-strategy Nash equilibrium.

APPENDIX B: INSTRUCTIONS

General Rules

This is an experiment in the economics of decision making. If you follow the
instructions carefully and make good decisions you can earn a considerable amount
of money. You will be paid in private and in cash at the end of the experiment.
There are ten people participating in this experiment. These instructions apply

equally to all ten participants. It is important that you do not talk, or in any way try
to communicate, with other people during the experiment. If you have a question,
raise your hand and a monitor will come over to where you are sitting and answer
your question in private.
The experiment will consist of 50 rounds. In each round you will be randomly

matched with another person in the room. The matchings will change from round
to round and you will not know with whom you are matched in any round.
In each round you will have an opportunity to earn points. At the end of the

experiment, you will be paid an amount in cash that will be determined by the total
number of points you earn from all rounds.
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Description of Each Round

At the beginning of the first round you will see a screen like the one below:

ROUND 1 MY POINTS TO BEGINNING OF THIS ROUND 0

MY CHOICE IS —-
(SELECT A, B, OR C)

PRESS ENTER WHEN YOU ARE SATISFIED WITH YOUR CHOICE

The top line tells you the round number and the total number of points you have
accumulated up to the beginning of the round.
You will make a decision by typing in a choice of A, B, or C. Until you press the

Enter button you are free to change your selection as often as you like simply by
typing in a different choice. When you are satisfied with your choice you will press
the Enter key. Once you press the Enter key you will have made your decision for
the round and it cannot be changed.
When all ten people have made their decisions you will see a screen displaying

your choice, the choice of the person with whom you were matched, and your point
earnings for the round. A sample screen is shown below (all entries in the sample
screen are for illustrative purposes only):

MY POINTS TO BEGINNING OF ROUND 1 0

You chose A
Person with whom you were matched chose B
You earned 120

MY POINTS AT END OF ROUND 1 120

Press space bar to continue

Your point earnings for the round will depend on your choice and the choice
made by the person with whom you are matched. (Remember, the person with
whom you are matched will change from round to round.) Specifically, your point
earnings will be calculated according to the table below, which gives your point
earnings for each possible choice combination. For example, if you choose B and
the person with whom you are matched chooses A, you will earn 10 points. Notice
that in this example, the person with whom you were matched earned 120 points,
since this person chose A and was matched with you (who chose B).

Person with Whom You Are Matched Chooses

A B C

You Choose A 40 120 10
B 10 10 120
C 40 40 40

When you have read the screen displaying your point earnings you will press the
space bar. This will conclude round one and you will go on to round two.
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At the beginning of all subsequent rounds, you will see a screen like the one
below (again, the numbers in the sample screen are only for illustrative purposes):

ROUND 2 MY POINTS TO BEGINNING OF THIS ROUND 120

Information from Previous Round
Choice A B C
Number 2 5 4
Average earnings 65 54 40

MY CHOICE IS —-
(SELECT A, B, OR C)

PRESS ENTER WHEN YOU ARE SATISFIED WITH YOUR CHOICE

This screen contains information about the results of the previous round. The
line beginning with “Number” lists the number of participants choosing A, B, or
C. The line beginning with “Average earnings” lists the average number of points
earned by participants choosing A, B, or C.
The line beginning with “MY CHOICE IS ——” is for you to type in a choice.

You should select A, B, or C. Until you press the Enter key, you are free to change
your selection as often as you like by typing in a different choice. When you are
satisfied with your choice you will press the Enter key. Once you have pressed the
Enter key you will have made your decision for the round and it cannot be changed.
When all ten participants have made their decisions you will be informed of your

point earnings for this round. Your point earnings will be calculated and displayed
in the same way as for round one.

Ending the Experiment

At the end of round 50 you will be paid, in private and in cash, an amount
determined by the total number of points you accumulated over all 50 rounds. You
will be paid 25 cents for every 40 points earned.
If you have any questions raise your hand.

Quiz

If you chose C and the person with whom you are matched in that round chose
A:

1. You would earn —– points.

2. The person with whom you are matched would earn —— points.

If you chose B and the person with whom you are matched in that round chose B
as well:

3. You would earn —– points.

4. The person with whom you are matched would earn —– points.

5. If at the end of 50 rounds you earned 2,500 points, you would receive a
payment of $ —–.
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